Learning
  • Software Engineering Golden Treasury
  • Trail Map
  • Caching
    • Alternatives to use before using cache
    • Caching Architecture
    • Cache Invalidation and Eviction
    • Cache Patterns
    • Cache
    • Consistency
    • Distributed Caching
    • Issues with caching
    • Types of caches
  • Career
    • algo types
    • Backend Knowledge
    • Burnout
    • consultancy
    • dev-level
    • Enterprise Developer
    • how-to-get-in-tech-from-other-job
    • how-to-get-into-junior-dev-position
    • induction
    • Interview
    • junior
    • mid
    • New Job
    • paths
    • Principle/staff Engineer
    • Requirements for job
    • Senior Dev capabilities
    • learning
      • automating-beginner
      • company1
        • analyst-progression
        • core-eng-progression
        • dev-progression
        • perf-eng-progression
        • soft-deliv-progression
    • mentoring
      • mentor-resources
    • recruitment
      • questions
      • Spotting posers
  • Computer Science
    • boolean-algebra
    • Compiler
    • Finite State Machine
    • Hashing
    • Algorithms
      • Breadth Firth Search
      • complexity
      • Depth First Search
      • efficiency
      • Sliding Window
      • sorting
    • data-structures
      • AVL Trees
      • data-structures
      • Linked List
    • machines
      • Intel Machine
      • Turing Machine
      • von neumann machine
      • Zeus Machine
  • devops
    • The 5 Ideals
    • microservice
    • Artifact repository
    • Bugs and Fixes
    • Build police
    • cloud-servers
    • Deployments
    • Environments
    • GitOps
    • handling-releases
    • infrastructure-as-code
    • System Migrations
    • SDP
    • On Premises Hosting
    • Properties/configuration
    • Release process
    • Release
    • Roll Outs
    • serverless
    • Serverless
    • Cloud Services
    • Versioning
    • AWS
      • deploy-docker-esc
      • cloud-practitiioner-essentials-notes
        • Module 1 - Intro to AWS
        • Module 2 Compute in the cloud
        • Module 3 Global Infrastructure and Reliability
        • Module 4 Networking
        • Module 5 Storage and Databases
        • Security
        • 7 Monitoring and Aanlytics
        • 8 Pricing and Support
        • 9 Migration and Innovation
      • developer-associate
        • AWS Elastic Beanstalk
    • build-tools
      • Managing dependecies
      • Apache ANT
      • Gradle
        • Custom Plugins
        • local-jars
      • Project Management - maven
        • Archtypes
        • Build Lifecycles
        • Customising build lifecycle
        • Dependencies
        • Directory layout
        • jar-files
        • one-to-one
        • Modules
        • Phases
        • Maven Plugins
        • POM
        • profiles
        • setup
        • Starting a maven project
        • wrapper
    • CI/CD
      • Continuous Delivery
      • zookeeper
      • Continuous Integration (CI)
      • github-actions
      • Pipeline
      • Teamcity
    • Cloud computing
      • Overview
      • Service Models
      • Cloud Services
    • containers
      • Best Practices
      • Docker
    • Infrastructure
      • IT Infrastructure Model
      • Non functional Attributes (Quality Attributes)
        • Infrastructure Availability
        • Performance
        • Secruity
    • monitoring
      • Alerting
      • Monitoring & Metrics
      • Metrics
      • Ready pages
      • Splunk
      • Status pages
      • notes-devops-talk
      • logging
        • logging
        • issues
        • Logging
        • Logging
    • Service mesh
      • Service Discovery
      • Istio
    • Terraform
    • container-management
      • Kubernetes
        • commands-glossary
        • OLTP
        • config-maps
        • Links
        • ingress
        • SDP
        • minikube
        • filter
        • indexes
        • sidecar
        • continuous-deployment
  • General Paradigms
    • CAP theorem
    • designing data-intensive applications summary
    • a-philosophy-of-software-design-notes
    • Aspect oriented Programming (AOP)
    • Best Practice
    • Cargo Cult
    • Clean Code
    • Coding reflections
    • Cognitive Complexity
    • Complexity
    • Conventions
    • Design discussions
    • Design
    • Error Handling Checklist
    • Exceptions
    • Feature Flags/toggle
    • Functional requirements
    • Last Responsible Moment
    • Lock In
    • Named Arguments
    • Naming
    • Performance Fallacy
    • Quality
    • Redesign of a system
    • Resuse vs Decoupling
    • Rules for software designs
    • Sad Paths
    • Scaling Webservices
    • Scientific Method
    • stream-processing
    • Upstream and Downstream
    • Patterns
      • Client-SDK-Pattern
      • ORM
      • Api gateway
      • Business Rules Engine
      • cache
      • Composition Root
      • Dependency Injection Containers
      • Dependency Injections
      • Double Dispatch
      • Exception Handling
      • Gateway pattern
      • Humble Object
      • Inheritance for reuse
      • Null Object Pattern
      • Object Mother
      • Patterns
      • Collection pipeline pattern
      • Service Locator
      • Setter constructor
      • Static factory method
      • Step Builder Pattern
      • telescopic constructors
      • Toggles
      • API
        • Aims of API designs
        • Avoid Checked Exceptions
        • Avoid returning nulls
        • Be defensive with your data
        • convience-methods
        • Fluent Interfaces
        • Loan Pattern
        • prefer-enums-to-boolean-returns
        • return-meaningful-types
        • Small intefaces
        • Support Lambdas
        • Weakest type
      • Gang of Four
        • Builder
        • Factory Pattern
        • Strategy Pattern
        • Template
        • abstract Factory
        • Adapter
        • Bridge Pattern
        • Chain of responsibility
        • Command Pattern
        • Composite Design Pattern
        • Decorator Pattern
        • Facade Pattern
        • Flyweight pattern
        • Guard Clause
        • Interpreter
        • html
        • Mediator Pattern
        • Memento Pattern
        • Observer
        • Prototype
        • Proxy
        • Singleton
        • State Pattern
        • Visitor Pattern
    • Architecture
      • Entity Component System
      • Integration Operation Segregation Principle
      • Adaptable Architecture
      • Architecture
      • C4 Modelling
      • cell-based
      • Clean/Hexagonal Architecture
      • Codifying architecture
      • Correct By configuration
      • Cost Base Architecture
      • Data Oriented Design
      • deliberate
      • Domain oriented DOMA
      • Event Driven Architecture
      • Evolutionary Architecture
      • examples
      • Feature Architecture
      • Framework and Libraries
      • functional-core-imperative-shell
      • Layered Architecture
      • Micro services
      • monoliths-to-services
      • Multi tiered Architecture
      • Multi tenant application
      • Resilient Architecture
      • stage event driven architecture (SEDA)
      • links spring rest app
      • Tomato Architecture
      • Tooling
      • Types of architecture
      • checklist
        • Checklist for new project
        • Back end Architecture Checklist
        • Front end Architecture Checklist
        • Mobile Architecture Checklist
      • Cloud Patterns
        • Command and Query Responsibility Segregation (CQRS)
        • Event Sourcing & CQRS
        • Asynchronous Request and Reply
        • Circuit Breaker
        • Retry
        • Sidecar
        • Strangler pattern
      • Domain driven design
        • value & entity
      • Microservices
        • Alternatives to choosing microservices first when scaling
        • Consistency in distributed systems
        • 12 Factor applications
      • Modularity
        • Module monolith vs Microservices
        • Spring Moduilth
      • Architecture Patterns
        • Hexagonal architecture
        • Inverting dependencies
        • Layering & Dependency Inversion Principle
        • Mappings
        • Vertical Slice architecture
        • Web Client Server
        • domain
          • Business and Data Layers Separation
          • DTO
          • Domain Model Pattern
          • Domain Object
          • Transaction Script/ Use Case pattern
        • Enterprise Patterns
          • Concurrency
          • Distribution strategies
          • Domain layer patterns
          • Layering/organisation of code
          • Mapping to datasource
          • Session State
        • Usecases
          • Use case return types
      • Serverless
        • Knative
    • Design architecture aims
      • back of envelope
      • Design ideas
      • Design mistakes
      • high-volume-design
      • ISO Quality Attributes
      • Non functional requirements
      • “Designing for Performance” by Martin Thompson
      • High Performance
      • Qaulity Attributes
        • Availability
        • System Availability
        • Fault Tolerance
        • interoperability
        • Latency
        • Maintability
        • Modifiability
        • Performance
        • Readability
        • Reliability
        • Scalability vs performance
        • Scalability
        • Scaling
        • statelessness
        • Testability
        • Throughput
      • System Design
      • web-scalability-distributed-arch
        • scalable-and-distributed-web-architecture
    • README
      • Conflict-free Replicated Data Type
      • Fallacies
      • Load balancing
      • Rate Limiting
      • Transactions
    • Patterns of Enterprise Application Architecture
      • Repository Pattern
      • Rules Engines
      • scatter-gather
      • Specification Design Pattern
      • Table Driven Development
      • Workflow Design Patterns
        • Triggers
    • Principles
      • Do It Or Get Bitten In The End
      • Dont Repeat Yourself
      • Habitability
      • Keep it simple
      • Responsibility Driven Design
      • Ya Ain’t Gonna Need It
      • Conceptual Overhead
      • CUPID
      • Reuse existing interfaces
      • Facts and Fallacies
      • locality of behaviour
      • Separation of Concerns
      • Simplicity
      • SLAP principle
      • Step down rule
      • Unix Philosophy
      • Wrong abstractions
      • SOLID
        • 1. Single Responsibility Principle
        • 2. Open Close Principle
        • 3. Liskov Substitution Principle
        • 4. Interface Segregation Principle
        • 5. Dependency Inversion Principle
        • GRASP (General Responsibility Assignment Software Principles)
        • Solid for packages
          • jobs
          • CCP
          • CRP
          • REP
          • egress
          • gossip-protocol
        • STUPID
    • programming-types
      • Coding to Contract/Interface
      • Links
      • Declarative vs Imperative Programming Languages
      • defensive-programming
      • Design by contract
      • Domain Specific Languages (DSL)
      • Event Driven
      • file-transfers
      • Logical Programming
      • Mutability
      • Self Healing
      • Simplicity
      • Type Driven Design
      • Value objects
      • Aspect Oriented Programming
      • Concurrent and Parallel Programming
        • Actor Model
        • Asynchronous and Synchronous Programming
        • Batch processing
        • Concurrency Models
        • SAP
        • Multithreading
        • Non Blocking IO
        • Optimistic vs Pessimistic Concurrency
        • Thread per connection or request model
        • Actor
        • aysnchronous-tasks
          • Computational Graphs
          • Divide and conquer
          • Future
          • Thread Pool
        • barriers
          • Barriers
          • Race conditions
        • design
          • agglomeration
          • Communication
          • Mapping
          • Partitioning
        • Liveness
          • Abandoned Lock
          • Deadlocks
          • Livelock
          • Starvation
        • locks
          • Read write lock
          • Reentrant lock
          • Try Lock
        • Mutual Exclusion
          • Data Races
          • Mutual Exclusion AKA Locks
        • performance
          • Amdahl's Law
          • Latency, throughput & speed
          • Measure Speed up
        • synchronization
          • Condition variable
          • producer consumer pattern
          • Semaphore
        • Threads and processes
          • Concurrent and parallel programming
          • Daemon Thread
          • Execution Scheduling
          • sequential-parallel
          • Thread Lifecycle
          • threads-and-processes
      • Functional Programming
        • Currying
        • design-patterns-to-func
        • imperative-programming
        • First class functions
        • Functional Looping
        • Higher Order Functions
        • Immutability
        • Issues with functional Programming
        • Lambda calculus
        • Lazy & Eager
        • map
        • Monad
        • Railway Programming
        • Recursion
        • Reduce
        • referential-transparacy
        • Referential transparency
        • Supplier
      • oop-design
        • Issues with object oriented code
        • Aggregation
        • Anti Patterns
        • Association
        • class-and-objects
        • Composition
        • general-laws-of-programming
        • general-notes
        • Getters and Setters
        • Inside out programming
        • Inversion of control
        • oop-design
        • Other principles
        • Outside in programming
        • Readability
        • Why OO is bad
        • README
          • abstraction
          • encapsulation
          • inheritance
          • Polymorphism
        • clean-code
          • Code Smells
          • Comments
          • Naming
          • CLEAN design
            • code is assertive
            • Cohesion
            • Connascence
            • Coupling
            • Encapsulation
            • Loose Coupling
            • Nonredundant code
      • Reactive Programming
        • reactive-programming
    • Projects and Software types
      • Applicatoin Development
      • Buying or creating software
      • Console Applications
      • Embedded Software development
      • Enterprise
      • Framework Development
      • Games
      • Library development
      • Rewriting
      • White Label Apps
    • State Machines
      • Spring State Machine
  • Other
    • 10x devs
    • Aim of software
    • Choosing Technologies
    • Coding faster
    • Component ownership
    • developer-pain-points
    • Developer Types
    • Effective Software design
    • Full Stack Developer
    • Good coder
    • Issues with Software Engineering and Engineers
    • Learning
    • Logic
    • Role
    • Software Actions
    • Software craftmanship
    • Software Designed
    • Software Engineering
    • Software
    • article-summaries
      • General notes
      • Summary of The Grug Brained Developer A layman's guide to thinking like the self-aware smol brained
      • improve-backend-engineer
      • Optimising Api
      • Simple and Easy
    • README
  • Hardware
    • Cpu memory
    • Storage
  • Integration
    • GRPC
    • API
    • Apis and communications between apps
    • asynchronous and synchronous communications
    • Batch Processing
    • Communications between apps
    • Delivery
    • Distributed Computing
    • Entry point
    • Event Source
    • SDP
    • egress
    • Graphql
    • Idempotency
    • Libraries
    • Long Polling
    • Multiplexing & Demultiplexing
    • Publish Subscribe
    • Push
    • Request & Response
    • REST
    • Remote Method Invocation
    • Remote Procedure Calls
    • Server Sent Events
    • Short Polling
    • Sidecars
    • SOAP
    • Stateless and Stateful
    • Streams
    • Third Party Integrations
    • wdsl
    • Web Services
    • Webhooks
    • repository
    • Kafka
      • Kafka Streams
    • message-queues
      • ActiveMQ
      • Dead Letter Queue
      • JMS
      • Messaging
  • Languages
    • C
    • Choosing A Language
    • cobol
    • Composite Data Types
    • creating
    • Date time
    • Numbers
    • Pass by value vs Pass by reference
    • Primitive Data Types
    • REST anti-patterns
    • Rust
    • Scripting
    • Static typing
    • string
    • Task Oriented Language
    • assembly
    • Getting started
      • Functional Concepts
    • cpp
    • Java
      • Code style
      • Garbage Collection
      • Intellij Debugging
      • Artifacts, Jars
      • Java internals
      • Java resources
      • Java versions
      • JShell
      • Libraries
      • opinionated-guide
      • Starting java
      • Java Tools
      • Why use java
      • Advanced Java
        • Annotations
        • API
        • Database and java
        • Debugging Performance
        • Files IO
        • Finalize
        • JDBC
        • jni
        • Libraries
        • Logging
        • SAP
        • Memory Management
        • Modules
        • OTher
        • Packaging Application
        • Pattern matching
        • performance
        • Properties
        • Reference
        • reflection
        • Scaling
        • Scheduling
        • secruity
        • Serilization
        • Time in Java
        • validation
        • Vector
        • Concurrency and Multithreaading
          • Akka
          • ExecutorCompletionService
          • Asynchronous Programming
          • Concurrency and Threads
          • CountDownLatch
          • Conccurrent Data Structures
          • Executor Service
          • Futures
          • reactive
          • Semaphore
          • structured concurrency
          • Threadlocal
          • Threads
          • Virtual Threads
          • Mutual Exclusion
            • Atomic
            • Synchronized
            • Thread safe class
            • Threads
        • debug
          • heap-dumps
          • thread-dumps
        • functional
          • Collectors
          • Exception Handling
          • Flatmap
          • Functional Programming
          • Generators
          • Immutability
          • issues
          • Optional
          • Parallel Streams
          • Reduce
        • networks
          • HTTP client
          • servlet-webcontainers
          • sockets
          • ssl-tls-https
      • Basics of java
        • compilation
        • computation
        • Conditonal/Flow control
        • Excuting code
        • Instructions
        • Looping/Iterating
        • memory-types-variables
        • methods
        • Printing to screen/debugging
        • Setup the system
        • Data structures
          • Arrays
          • Arayslist/list
          • Map
      • Effective Java notes
        • Creating and Destroying Objects
        • Methods Common to All Objects
        • best-practice-api
        • Classes and Interfaces
        • Enums and Annotations
        • Generics
      • framework
        • aop
        • bad
        • Dagger
        • Databases
        • Lombok
        • Mapstruct
        • netty
        • resliance4j
        • RxJava
        • Vert.x
        • Spring
          • Spring Data Repositories
          • actuator
          • cloud-native
          • H2 Db in Spring
          • Initializrs
          • JDBC Template
          • Java Persistence API (JPA)
          • kotlin
          • Pitfalls and advice
          • PRoxies
          • Reactive
          • spring security
          • spring-aop
          • Spring Boot
          • spring-jdbc
          • Spring MVC
          • Spring Testing
          • Testing
          • Transaction
          • patterns
            • Component Scan Patterns
            • Concurrency
            • Decorator Pattern in Spring
        • Micronaut
          • DI
        • Quarkus
          • database
          • Links
      • Intermediate level java
        • String Class
        • Assertions
        • Casting
        • Clonable
        • Command line arguments
        • Common Libraries/classes
        • Comparators
        • Where to store them?
        • Shallow and Deep Copy
        • Date and Time
        • Enums
        • Equals and Hashcode
        • Equals and hashcode
        • Exceptions
        • Final
        • Finally
        • Generics
        • incrementors
        • Null
        • packages and imports
        • Random numbers
        • Regex
        • Static
        • toString()
        • OOP
          • Accessors
          • Classes
          • Object Oriented Programming
          • Constructors
          • Fields/state
          • Inheritence
          • Interfaces
          • Methods/behaviour
          • Nested Classes
          • Objects
          • Static VS Instance
          • Whether to use a dependency or static method?
        • Other Collections
          • Other Collections
          • Arraylist vs Linkedlist
          • LinkedHashMap
          • Linked List
          • Priority queue
          • Sequenced Collections
          • Set
          • Shallow vs Deep Copy
          • Time Complexity of Collections
          • What Collection To use?
    • kotlin
      • Domain Specific Language
      • learning
      • Libraries
      • Personal Roadmap
      • Links
    • Nodejs
      • Performance
  • Management & Workflow
    • Agile
    • Take Breaks
    • # Communication
    • Engineering Daybook
    • Estimates
    • Feedback Loops
    • Little's law
    • Managing Others
    • poser.
    • Presentations
    • self-improvement
    • software-teams
    • Task List
    • trade-off
    • Types of devs
    • Type of work
    • Waterfall Methodology
    • coding-process
      • Bugs
      • Code Review
      • Code Reviews
      • Documentation
      • Done
      • Handover
      • Mob Programming
      • Navigate codebase
      • Pair Programming
      • Pull Requests
      • How to do a story
      • Story to code
      • Trunk based development
      • Xtreme Programming (XP)
      • debugging
        • 9 Rules of Thumb of Dubugging
        • Debugging
        • using-debugger
      • Legacy code
        • Legacy crisis
        • Working with legacy code
    • Managing work
      • Theory of constraints
      • Distributed Teams
      • estimations
      • Improving team's output
      • Kanban
      • Kick offs
      • Retrospectives
      • Scrum
      • Sign offs
      • Stand ups
      • Time bombs
      • Project management triangle
    • Notion
    • recruitment
      • In Person Test
      • Interviews
      • Unattended test
  • Networks
    • Content Delivery Network - CDN
    • DNS
    • cache control
    • Cookies and Sessions
    • Docker Networking
    • Duplex
    • Etags
    • HTTP Cache
    • HTTP - Hyper Text Transfer Protocol
    • HTTP/2
    • Http 3
    • Internet & Web
    • iptables
    • Keep alive
    • Leader Election
    • Load balancer
    • long-polling
    • Network Access Control
    • Network Address Translation (NAT)
    • Network Layers
    • Nginx
    • OSI network model
    • Persistent Connection
    • Polling
    • Proxy
    • Quic
    • reverse-proxy
    • servers
    • Server sent events (SSE)
    • SSH
    • Streaming
    • Timeouts
    • Url Encoding
    • Web sockets
    • WebRTC (Web Real-Time Communication)
    • Wireshark
    • tcp/ip
      • Congestion
      • IP - Internet Protocol
      • TCP - Transmission Control Protocol
  • Operating Systems
    • Cloud Computing
    • Distributed File Systems
    • Distributed Shared Memory
    • Input/Output Management
    • Inter-Process Communication
    • Threads and Concurrency
    • Virtualization
    • Searching using CLI
    • Bash and scripting
    • Booting of linux
    • makefile
    • Memory Management
    • Processes and Process Management
    • Scheduling
    • Scripting
    • Links
    • Ubuntu
    • Unix File System
    • User groups
    • Linux
  • Other Topics
    • Finite state machine
    • Floating point
    • Googling
    • Setup
    • Unicode
    • Machine Learning
      • Artificial Intelligence
      • Jupyter Notebook
    • Blockchain
    • Front End
      • Single Page App
      • cqrs
      • css
      • Debounce
      • Dom, Virtual Dom
      • ADP
      • htmx
      • Island Architecture
      • Why use?
      • Java and front end tech
      • mermaidjs
      • Next JS
      • javascript
        • Debounce
        • design
        • Event loop
        • testing
        • Typescript
        • react
          • Design
          • learning
          • performance
          • React JS
          • testing
      • performance
      • Static website
    • jobs
      • Tooling
      • bash text editor - vim
      • VS code
      • scaling
        • AI Assistant
        • Debugging
        • General features and tips and tricks
        • IDE - Intellij
        • Plugins
        • Spring usage
  • persistance
    • ACID - Atomicity, Consistency, Isolation, Durability
    • BASE - Basic Availability, Soft state, Eventual Consistency
    • Buffer
    • Connection pooling
    • service
    • Database Migrations - flywaydb
    • Databases
    • Eventual Consistency
    • GraphQL
    • IDs
    • indexing
    • MongoDB
    • Normalisation
    • ORacle sql
    • Partitioning
    • patterns
    • PL SQL
    • Replication and Sharding
    • Repository pattern
    • Sharding
    • Snapshot
    • Strong Consistency
    • links
    • Files
      • Areas to think of
    • hibernate
      • ORM-hibernate
    • Indexes
      • Elastisearch
    • relationships
      • many-to-many
      • SDP
      • serverless
      • x-to-x-relationships
    • sql
      • Group by
      • indexes
      • Joins
      • Common mistakes
      • operators
      • performance
    • types
      • maven-commands-on-intellij
      • in-memory-database-h2
      • Key value database/store
      • Mongo DB
      • NoSQL Databases
      • Relational Database
      • Relational Vs Document Databases
  • Security
    • OAuth
    • API Keys
    • Certificates and JKS
    • Cluster Secruity
    • Communication Between Two Applications via TLS
    • Cookies & Sessions
    • CORS - Cross-Origin Resource Sharing
    • csrf
    • Encryption and Decryption
    • Endpoint Protection
    • JWT
    • language-specific
    • OpenID
    • OWASP
    • Secrets
    • Secruity
    • Servlet authentication and Authorization
    • vault
  • Testing, Maintainablity & Debugging
    • Service-virtualization and api mocking
    • a-test-bk
    • Build Monitor
    • Builds
    • Code coverage
    • consumer-driven contract testing
    • Fixity
    • Living Documentation
    • Mocks, Stubs & Doubles
    • patterns
    • Quality Engineering
    • Reading and working with legacy code
    • Reading
    • remote-debug-intellij
    • simulator
    • Technical Debt
    • Technical Waste
    • Test cases
    • Test Data Builders
    • Test Pyramids
    • Test Types
    • Testing Good Practice
    • Testing
    • What to prime
    • What to test
    • Debugging
      • Debugging in kubernetes or Docker
    • fixing
      • How to Deal with I/O Expense
      • How to Manage Memory
      • How to Optimize Loops
      • How to Fix Performance Problems
    • Legacy Code
      • Learning
      • Legacy code
      • techniques
    • libraries
      • assertj
      • Data Faker
      • Junit
      • mockito
      • Test Containers
      • Wiremock
      • Yatspec
    • Refactoring
      • Code Smells
      • refactoring-types
      • Refactoring
      • Technical Debt
      • pyramid-of-refactoring
        • Pyramid of Refactoring
    • Test first strategies
      • Acceptance Testing Driven Developement (ATDD)
      • Behaviour Driven Development/Design - BDD
      • Inside out
      • Outside in
      • Test driven development (TDD)
    • testing
      • Acceptance tests
      • How Much Testing is Enough?
      • Approval Testing
      • Bad Testing
      • End to end tests
      • Honeycomb
      • Testing Microservices
      • Mutation testing
      • Property based testing
      • Smoke Testing
      • social-unit-tests
      • solitary-unit-tests
      • Static Analysis Test
      • Unit testing
  • Version Control - Git
    • Branch by Abstraction
    • feature-branching
    • Git patches
    • Trunk Based Development
Powered by GitBook
On this page
  • Option 1
  • Option 2
  • No Code
  • Understood code
  • Legacy Code
  • OO Development

Was this helpful?

  1. General Paradigms
  2. programming-types
  3. oop-design

general-notes

Universal Principle: The only code that must be changed is code that is wrong.

You can act two ways on this:

Option 1: Don't get the code wrong to start with. Option 2: Make it so that changing the code is easier.

Option 1

How do you not get the code wrong? So far as an industry we have tried:

Type systems CASE and other high level diagramming tools Business Analysts Databases New Languages Static Analysis tools Unit Testing Use Cases/Stories/Epics/Conversations Quality Assurance Running three or more separately and differently coded versions of the same algorithm BDD, DDD, TDD Cross Functional Teams To name a few...

Was it successful? No.

Was it a failure? No, we found and fixed a lot of issues.

So what really happened? We had to change a lot of code.

Sounds like option 2 would have been awfully useful! sheepish industry looks askance

Option 2

How do you make code easy to change? ... by at least not making it harder to change.

There are three sorts of code:

No Code Understood Code Legacy Code

No Code

Beautiful Verdant fields of blissful nothingness... Not really.

Before there is code, there already exist processes, people, resources, questions, curiosity, and all sorts of other stuff. Writing code is often proclaimed as the solution to the woes this stuff is already experiencing. All code does it make the woe happen faster. So before coding anything straighten up the mess.

Once the mess is straightened up, now comes the really hard part: resisting the urge to go and start writing something.

Why? Because any code you do write, necessarily makes it harder to change. So if you do write code, make sure it is code that absolutely must be written. Draft it, edit, re-edit, and so forth until the code reads well. Pass it to other developers for critical review.

Understood code

There are some problems that are so well understood that we have documented hundreds of precise ways to solve them. The Pythagorean Theorem is one such problem. Sorting is another.

These problems are so well understood that codifying them follows a very preset proscribed pattern. In these situations following that pattern makes the code very easy to read, and very easy to change. Attempting to elaborate them further, or be terser in their expression only hurts legibility, which makes it harder to change them.

Legacy Code

Legacy code is anything written be it in a text file, in a database, a picture, etc.. that if it were somehow missing that you could not write (or otherwise reproduce) completely in its entirety from memory with an accuracy of better than 99%.

Most software systems sit in the legacy area either because they are too large in terms of lines of code, too complicated in terms of the problems being solved, or too unknown in the sense that you the reader don't know how the system does actually do. By this definition a new or junior developer will even see known problems as legacy code.

Many people will tell you all sorts of ways to make the code easier to change. Not all of them will work on your code base, because at this size and scale no two code-bases are even remotely identical in what they are trying to solve or how they solve it. Otherwise we would either have a well known problem, or no code.

The problem is how do you define "easy to change"? Everyone will have a different opinion which is not useful. Also we are dealing with complex problems (otherwise they would already be solved and well understood) and simple problems are known to have multiple equally valid solutions (just look at sorting). So it just might be that there are several ways to write a program that is easy to change.

Kevlin Henney talks about this in a couple of lectures where he shows different approaches for writing software that generates the expected output for a game of FizzBuzz. It is interesting because each representation of the solution favours some sorts of change more easily than others.

This chases the idea that there is nothing more dangerous than having a single idea. With a single idea you cannot orientate yourself because it is a single point of reference.

The number of points needed to orientate yourself increases with the dimensionality of the space, 2D requires 2+, 3D requires 3+, etc... Its not just the number of points though, but the quality of the points. Each point needs to tell you something new that none of the other points contain, this new thing should be noticeably different, otherwise the point is useless for orientating (even though it might be a decent end solution).

Code has a very high dimensionality so you are going to need many points of reference to be somewhat sure that you have a good-enough orientation. Only then can you look at those points and make a decision as to what is better. You will know it is better because it outshines these other solutions.

OO Development

Focus less on it being Object Orientated. It is all code, the techniques are universal, if not always easy to implement.

You have a language, it provides you with a wealth of tools. Learn them.

Each tool has a place when and where it is useful, as it equally has places when and where it is useless, or even out-right dangerous.

Every tool is an implementation of some known problem domain. As there are many ways to solve problems, there are usually several tools that are implementations of that domain. Before picking one up, look at each in turn and contrast their strengths and weaknesses, perhaps solve the same simple problem that exercises the features you need with each tool, then decide.

Train yourself in other languages and other paradigms of programming. This will sharpen your skill at orientating in code space largely because it improves the quality of the points in code space you have knowledge of.

Don't throw out those general rules of thumb. They are general precisely because they represent problems that manifest regardless of you programming paradigm. Of course if you have out-grown them, great you have already internalised the wisdom they contain.

Find already existing software that solves similar problems. Read their code and study the patterns used (a.k.a. the well known solutions).

Make use of the techniques we as industry have discovered to not get code wrong to start with. Obviously mileage will vary for each code base.

Previousgeneral-laws-of-programmingNextGetters and Setters

Last updated 5 years ago

Was this helpful?