Learning
  • Software Engineering Golden Treasury
  • Trail Map
  • Caching
    • Alternatives to use before using cache
    • Caching Architecture
    • Cache Invalidation and Eviction
    • Cache Patterns
    • Cache
    • Consistency
    • Distributed Caching
    • Issues with caching
    • Types of caches
  • Career
    • algo types
    • Backend Knowledge
    • Burnout
    • consultancy
    • dev-level
    • Enterprise Developer
    • how-to-get-in-tech-from-other-job
    • how-to-get-into-junior-dev-position
    • induction
    • Interview
    • junior
    • mid
    • New Job
    • paths
    • Principle/staff Engineer
    • Requirements for job
    • Senior Dev capabilities
    • learning
      • automating-beginner
      • company1
        • analyst-progression
        • core-eng-progression
        • dev-progression
        • perf-eng-progression
        • soft-deliv-progression
    • mentoring
      • mentor-resources
    • recruitment
      • questions
      • Spotting posers
  • Computer Science
    • boolean-algebra
    • Compiler
    • Finite State Machine
    • Hashing
    • Algorithms
      • Breadth Firth Search
      • complexity
      • Depth First Search
      • efficiency
      • Sliding Window
      • sorting
    • data-structures
      • AVL Trees
      • data-structures
      • Linked List
    • machines
      • Intel Machine
      • Turing Machine
      • von neumann machine
      • Zeus Machine
  • devops
    • The 5 Ideals
    • microservice
    • Artifact repository
    • Bugs and Fixes
    • Build police
    • cloud-servers
    • Deployments
    • Environments
    • GitOps
    • handling-releases
    • infrastructure-as-code
    • System Migrations
    • SDP
    • On Premises Hosting
    • Properties/configuration
    • Release process
    • Release
    • Roll Outs
    • serverless
    • Serverless
    • Cloud Services
    • Versioning
    • AWS
      • deploy-docker-esc
      • cloud-practitiioner-essentials-notes
        • Module 1 - Intro to AWS
        • Module 2 Compute in the cloud
        • Module 3 Global Infrastructure and Reliability
        • Module 4 Networking
        • Module 5 Storage and Databases
        • Security
        • 7 Monitoring and Aanlytics
        • 8 Pricing and Support
        • 9 Migration and Innovation
      • developer-associate
        • AWS Elastic Beanstalk
    • build-tools
      • Managing dependecies
      • Apache ANT
      • Gradle
        • Custom Plugins
        • local-jars
      • Project Management - maven
        • Archtypes
        • Build Lifecycles
        • Customising build lifecycle
        • Dependencies
        • Directory layout
        • jar-files
        • one-to-one
        • Modules
        • Phases
        • Maven Plugins
        • POM
        • profiles
        • setup
        • Starting a maven project
        • wrapper
    • CI/CD
      • Continuous Delivery
      • zookeeper
      • Continuous Integration (CI)
      • github-actions
      • Pipeline
      • Teamcity
    • Cloud computing
      • Overview
      • Service Models
      • Cloud Services
    • containers
      • Best Practices
      • Docker
    • Infrastructure
      • IT Infrastructure Model
      • Non functional Attributes (Quality Attributes)
        • Infrastructure Availability
        • Performance
        • Secruity
    • monitoring
      • Alerting
      • Monitoring & Metrics
      • Metrics
      • Ready pages
      • Splunk
      • Status pages
      • notes-devops-talk
      • logging
        • logging
        • issues
        • Logging
        • Logging
    • Service mesh
      • Service Discovery
      • Istio
    • Terraform
    • container-management
      • Kubernetes
        • commands-glossary
        • OLTP
        • config-maps
        • Links
        • ingress
        • SDP
        • minikube
        • filter
        • indexes
        • sidecar
        • continuous-deployment
  • General Paradigms
    • CAP theorem
    • designing data-intensive applications summary
    • a-philosophy-of-software-design-notes
    • Aspect oriented Programming (AOP)
    • Best Practice
    • Cargo Cult
    • Clean Code
    • Coding reflections
    • Cognitive Complexity
    • Complexity
    • Conventions
    • Design discussions
    • Design
    • Error Handling Checklist
    • Exceptions
    • Feature Flags/toggle
    • Functional requirements
    • Last Responsible Moment
    • Lock In
    • Named Arguments
    • Naming
    • Performance Fallacy
    • Quality
    • Redesign of a system
    • Resuse vs Decoupling
    • Rules for software designs
    • Sad Paths
    • Scaling Webservices
    • Scientific Method
    • stream-processing
    • Upstream and Downstream
    • Patterns
      • Client-SDK-Pattern
      • ORM
      • Api gateway
      • Business Rules Engine
      • cache
      • Composition Root
      • Dependency Injection Containers
      • Dependency Injections
      • Double Dispatch
      • Exception Handling
      • Gateway pattern
      • Humble Object
      • Inheritance for reuse
      • Null Object Pattern
      • Object Mother
      • Patterns
      • Collection pipeline pattern
      • Service Locator
      • Setter constructor
      • Static factory method
      • Step Builder Pattern
      • telescopic constructors
      • Toggles
      • API
        • Aims of API designs
        • Avoid Checked Exceptions
        • Avoid returning nulls
        • Be defensive with your data
        • convience-methods
        • Fluent Interfaces
        • Loan Pattern
        • prefer-enums-to-boolean-returns
        • return-meaningful-types
        • Small intefaces
        • Support Lambdas
        • Weakest type
      • Gang of Four
        • Builder
        • Factory Pattern
        • Strategy Pattern
        • Template
        • abstract Factory
        • Adapter
        • Bridge Pattern
        • Chain of responsibility
        • Command Pattern
        • Composite Design Pattern
        • Decorator Pattern
        • Facade Pattern
        • Flyweight pattern
        • Guard Clause
        • Interpreter
        • html
        • Mediator Pattern
        • Memento Pattern
        • Observer
        • Prototype
        • Proxy
        • Singleton
        • State Pattern
        • Visitor Pattern
    • Architecture
      • Entity Component System
      • Integration Operation Segregation Principle
      • Adaptable Architecture
      • Architecture
      • C4 Modelling
      • cell-based
      • Clean/Hexagonal Architecture
      • Codifying architecture
      • Correct By configuration
      • Cost Base Architecture
      • Data Oriented Design
      • deliberate
      • Domain oriented DOMA
      • Event Driven Architecture
      • Evolutionary Architecture
      • examples
      • Feature Architecture
      • Framework and Libraries
      • functional-core-imperative-shell
      • Layered Architecture
      • Micro services
      • monoliths-to-services
      • Multi tiered Architecture
      • Multi tenant application
      • Resilient Architecture
      • stage event driven architecture (SEDA)
      • links spring rest app
      • Tomato Architecture
      • Tooling
      • Types of architecture
      • checklist
        • Checklist for new project
        • Back end Architecture Checklist
        • Front end Architecture Checklist
        • Mobile Architecture Checklist
      • Cloud Patterns
        • Command and Query Responsibility Segregation (CQRS)
        • Event Sourcing & CQRS
        • Asynchronous Request and Reply
        • Circuit Breaker
        • Retry
        • Sidecar
        • Strangler pattern
      • Domain driven design
        • value & entity
      • Microservices
        • Alternatives to choosing microservices first when scaling
        • Consistency in distributed systems
        • 12 Factor applications
      • Modularity
        • Module monolith vs Microservices
        • Spring Moduilth
      • Architecture Patterns
        • Hexagonal architecture
        • Inverting dependencies
        • Layering & Dependency Inversion Principle
        • Mappings
        • Vertical Slice architecture
        • Web Client Server
        • domain
          • Business and Data Layers Separation
          • DTO
          • Domain Model Pattern
          • Domain Object
          • Transaction Script/ Use Case pattern
        • Enterprise Patterns
          • Concurrency
          • Distribution strategies
          • Domain layer patterns
          • Layering/organisation of code
          • Mapping to datasource
          • Session State
        • Usecases
          • Use case return types
      • Serverless
        • Knative
    • Design architecture aims
      • back of envelope
      • Design ideas
      • Design mistakes
      • high-volume-design
      • ISO Quality Attributes
      • Non functional requirements
      • “Designing for Performance” by Martin Thompson
      • High Performance
      • Qaulity Attributes
        • Availability
        • System Availability
        • Fault Tolerance
        • interoperability
        • Latency
        • Maintability
        • Modifiability
        • Performance
        • Readability
        • Reliability
        • Scalability vs performance
        • Scalability
        • Scaling
        • statelessness
        • Testability
        • Throughput
      • System Design
      • web-scalability-distributed-arch
        • scalable-and-distributed-web-architecture
    • README
      • Conflict-free Replicated Data Type
      • Fallacies
      • Load balancing
      • Rate Limiting
      • Transactions
    • Patterns of Enterprise Application Architecture
      • Repository Pattern
      • Rules Engines
      • scatter-gather
      • Specification Design Pattern
      • Table Driven Development
      • Workflow Design Patterns
        • Triggers
    • Principles
      • Do It Or Get Bitten In The End
      • Dont Repeat Yourself
      • Habitability
      • Keep it simple
      • Responsibility Driven Design
      • Ya Ain’t Gonna Need It
      • Conceptual Overhead
      • CUPID
      • Reuse existing interfaces
      • Facts and Fallacies
      • locality of behaviour
      • Separation of Concerns
      • Simplicity
      • SLAP principle
      • Step down rule
      • Unix Philosophy
      • Wrong abstractions
      • SOLID
        • 1. Single Responsibility Principle
        • 2. Open Close Principle
        • 3. Liskov Substitution Principle
        • 4. Interface Segregation Principle
        • 5. Dependency Inversion Principle
        • GRASP (General Responsibility Assignment Software Principles)
        • Solid for packages
          • jobs
          • CCP
          • CRP
          • REP
          • egress
          • gossip-protocol
        • STUPID
    • programming-types
      • Coding to Contract/Interface
      • Links
      • Declarative vs Imperative Programming Languages
      • defensive-programming
      • Design by contract
      • Domain Specific Languages (DSL)
      • Event Driven
      • file-transfers
      • Logical Programming
      • Mutability
      • Self Healing
      • Simplicity
      • Type Driven Design
      • Value objects
      • Aspect Oriented Programming
      • Concurrent and Parallel Programming
        • Actor Model
        • Asynchronous and Synchronous Programming
        • Batch processing
        • Concurrency Models
        • SAP
        • Multithreading
        • Non Blocking IO
        • Optimistic vs Pessimistic Concurrency
        • Thread per connection or request model
        • Actor
        • aysnchronous-tasks
          • Computational Graphs
          • Divide and conquer
          • Future
          • Thread Pool
        • barriers
          • Barriers
          • Race conditions
        • design
          • agglomeration
          • Communication
          • Mapping
          • Partitioning
        • Liveness
          • Abandoned Lock
          • Deadlocks
          • Livelock
          • Starvation
        • locks
          • Read write lock
          • Reentrant lock
          • Try Lock
        • Mutual Exclusion
          • Data Races
          • Mutual Exclusion AKA Locks
        • performance
          • Amdahl's Law
          • Latency, throughput & speed
          • Measure Speed up
        • synchronization
          • Condition variable
          • producer consumer pattern
          • Semaphore
        • Threads and processes
          • Concurrent and parallel programming
          • Daemon Thread
          • Execution Scheduling
          • sequential-parallel
          • Thread Lifecycle
          • threads-and-processes
      • Functional Programming
        • Currying
        • design-patterns-to-func
        • imperative-programming
        • First class functions
        • Functional Looping
        • Higher Order Functions
        • Immutability
        • Issues with functional Programming
        • Lambda calculus
        • Lazy & Eager
        • map
        • Monad
        • Railway Programming
        • Recursion
        • Reduce
        • referential-transparacy
        • Referential transparency
        • Supplier
      • oop-design
        • Issues with object oriented code
        • Aggregation
        • Anti Patterns
        • Association
        • class-and-objects
        • Composition
        • general-laws-of-programming
        • general-notes
        • Getters and Setters
        • Inside out programming
        • Inversion of control
        • oop-design
        • Other principles
        • Outside in programming
        • Readability
        • Why OO is bad
        • README
          • abstraction
          • encapsulation
          • inheritance
          • Polymorphism
        • clean-code
          • Code Smells
          • Comments
          • Naming
          • CLEAN design
            • code is assertive
            • Cohesion
            • Connascence
            • Coupling
            • Encapsulation
            • Loose Coupling
            • Nonredundant code
      • Reactive Programming
        • reactive-programming
    • Projects and Software types
      • Applicatoin Development
      • Buying or creating software
      • Console Applications
      • Embedded Software development
      • Enterprise
      • Framework Development
      • Games
      • Library development
      • Rewriting
      • White Label Apps
    • State Machines
      • Spring State Machine
  • Other
    • 10x devs
    • Aim of software
    • Choosing Technologies
    • Coding faster
    • Component ownership
    • developer-pain-points
    • Developer Types
    • Effective Software design
    • Full Stack Developer
    • Good coder
    • Issues with Software Engineering and Engineers
    • Learning
    • Logic
    • Role
    • Software Actions
    • Software craftmanship
    • Software Designed
    • Software Engineering
    • Software
    • article-summaries
      • General notes
      • Summary of The Grug Brained Developer A layman's guide to thinking like the self-aware smol brained
      • improve-backend-engineer
      • Optimising Api
      • Simple and Easy
    • README
  • Hardware
    • Cpu memory
    • Storage
  • Integration
    • GRPC
    • API
    • Apis and communications between apps
    • asynchronous and synchronous communications
    • Batch Processing
    • Communications between apps
    • Delivery
    • Distributed Computing
    • Entry point
    • Event Source
    • SDP
    • egress
    • Graphql
    • Idempotency
    • Libraries
    • Long Polling
    • Multiplexing & Demultiplexing
    • Publish Subscribe
    • Push
    • Request & Response
    • REST
    • Remote Method Invocation
    • Remote Procedure Calls
    • Server Sent Events
    • Short Polling
    • Sidecars
    • SOAP
    • Stateless and Stateful
    • Streams
    • Third Party Integrations
    • wdsl
    • Web Services
    • Webhooks
    • repository
    • Kafka
      • Kafka Streams
    • message-queues
      • ActiveMQ
      • Dead Letter Queue
      • JMS
      • Messaging
  • Languages
    • C
    • Choosing A Language
    • cobol
    • Composite Data Types
    • creating
    • Date time
    • Numbers
    • Pass by value vs Pass by reference
    • Primitive Data Types
    • REST anti-patterns
    • Rust
    • Scripting
    • Static typing
    • string
    • Task Oriented Language
    • assembly
    • Getting started
      • Functional Concepts
    • cpp
    • Java
      • Code style
      • Garbage Collection
      • Intellij Debugging
      • Artifacts, Jars
      • Java internals
      • Java resources
      • Java versions
      • JShell
      • Libraries
      • opinionated-guide
      • Starting java
      • Java Tools
      • Why use java
      • Advanced Java
        • Annotations
        • API
        • Database and java
        • Debugging Performance
        • Files IO
        • Finalize
        • JDBC
        • jni
        • Libraries
        • Logging
        • SAP
        • Memory Management
        • Modules
        • OTher
        • Packaging Application
        • Pattern matching
        • performance
        • Properties
        • Reference
        • reflection
        • Scaling
        • Scheduling
        • secruity
        • Serilization
        • Time in Java
        • validation
        • Vector
        • Concurrency and Multithreaading
          • Akka
          • ExecutorCompletionService
          • Asynchronous Programming
          • Concurrency and Threads
          • CountDownLatch
          • Conccurrent Data Structures
          • Executor Service
          • Futures
          • reactive
          • Semaphore
          • structured concurrency
          • Threadlocal
          • Threads
          • Virtual Threads
          • Mutual Exclusion
            • Atomic
            • Synchronized
            • Thread safe class
            • Threads
        • debug
          • heap-dumps
          • thread-dumps
        • functional
          • Collectors
          • Exception Handling
          • Flatmap
          • Functional Programming
          • Generators
          • Immutability
          • issues
          • Optional
          • Parallel Streams
          • Reduce
        • networks
          • HTTP client
          • servlet-webcontainers
          • sockets
          • ssl-tls-https
      • Basics of java
        • compilation
        • computation
        • Conditonal/Flow control
        • Excuting code
        • Instructions
        • Looping/Iterating
        • memory-types-variables
        • methods
        • Printing to screen/debugging
        • Setup the system
        • Data structures
          • Arrays
          • Arayslist/list
          • Map
      • Effective Java notes
        • Creating and Destroying Objects
        • Methods Common to All Objects
        • best-practice-api
        • Classes and Interfaces
        • Enums and Annotations
        • Generics
      • framework
        • aop
        • bad
        • Dagger
        • Databases
        • Lombok
        • Mapstruct
        • netty
        • resliance4j
        • RxJava
        • Vert.x
        • Spring
          • Spring Data Repositories
          • actuator
          • cloud-native
          • H2 Db in Spring
          • Initializrs
          • JDBC Template
          • Java Persistence API (JPA)
          • kotlin
          • Pitfalls and advice
          • PRoxies
          • Reactive
          • spring security
          • spring-aop
          • Spring Boot
          • spring-jdbc
          • Spring MVC
          • Spring Testing
          • Testing
          • Transaction
          • patterns
            • Component Scan Patterns
            • Concurrency
            • Decorator Pattern in Spring
        • Micronaut
          • DI
        • Quarkus
          • database
          • Links
      • Intermediate level java
        • String Class
        • Assertions
        • Casting
        • Clonable
        • Command line arguments
        • Common Libraries/classes
        • Comparators
        • Where to store them?
        • Shallow and Deep Copy
        • Date and Time
        • Enums
        • Equals and Hashcode
        • Equals and hashcode
        • Exceptions
        • Final
        • Finally
        • Generics
        • incrementors
        • Null
        • packages and imports
        • Random numbers
        • Regex
        • Static
        • toString()
        • OOP
          • Accessors
          • Classes
          • Object Oriented Programming
          • Constructors
          • Fields/state
          • Inheritence
          • Interfaces
          • Methods/behaviour
          • Nested Classes
          • Objects
          • Static VS Instance
          • Whether to use a dependency or static method?
        • Other Collections
          • Other Collections
          • Arraylist vs Linkedlist
          • LinkedHashMap
          • Linked List
          • Priority queue
          • Sequenced Collections
          • Set
          • Shallow vs Deep Copy
          • Time Complexity of Collections
          • What Collection To use?
    • kotlin
      • Domain Specific Language
      • learning
      • Libraries
      • Personal Roadmap
      • Links
    • Nodejs
      • Performance
  • Management & Workflow
    • Agile
    • Take Breaks
    • # Communication
    • Engineering Daybook
    • Estimates
    • Feedback Loops
    • Little's law
    • Managing Others
    • poser.
    • Presentations
    • self-improvement
    • software-teams
    • Task List
    • trade-off
    • Types of devs
    • Type of work
    • Waterfall Methodology
    • coding-process
      • Bugs
      • Code Review
      • Code Reviews
      • Documentation
      • Done
      • Handover
      • Mob Programming
      • Navigate codebase
      • Pair Programming
      • Pull Requests
      • How to do a story
      • Story to code
      • Trunk based development
      • Xtreme Programming (XP)
      • debugging
        • 9 Rules of Thumb of Dubugging
        • Debugging
        • using-debugger
      • Legacy code
        • Legacy crisis
        • Working with legacy code
    • Managing work
      • Theory of constraints
      • Distributed Teams
      • estimations
      • Improving team's output
      • Kanban
      • Kick offs
      • Retrospectives
      • Scrum
      • Sign offs
      • Stand ups
      • Time bombs
      • Project management triangle
    • Notion
    • recruitment
      • In Person Test
      • Interviews
      • Unattended test
  • Networks
    • Content Delivery Network - CDN
    • DNS
    • cache control
    • Cookies and Sessions
    • Docker Networking
    • Duplex
    • Etags
    • HTTP Cache
    • HTTP - Hyper Text Transfer Protocol
    • HTTP/2
    • Http 3
    • Internet & Web
    • iptables
    • Keep alive
    • Leader Election
    • Load balancer
    • long-polling
    • Network Access Control
    • Network Address Translation (NAT)
    • Network Layers
    • Nginx
    • OSI network model
    • Persistent Connection
    • Polling
    • Proxy
    • Quic
    • reverse-proxy
    • servers
    • Server sent events (SSE)
    • SSH
    • Streaming
    • Timeouts
    • Url Encoding
    • Web sockets
    • WebRTC (Web Real-Time Communication)
    • Wireshark
    • tcp/ip
      • Congestion
      • IP - Internet Protocol
      • TCP - Transmission Control Protocol
  • Operating Systems
    • Cloud Computing
    • Distributed File Systems
    • Distributed Shared Memory
    • Input/Output Management
    • Inter-Process Communication
    • Threads and Concurrency
    • Virtualization
    • Searching using CLI
    • Bash and scripting
    • Booting of linux
    • makefile
    • Memory Management
    • Processes and Process Management
    • Scheduling
    • Scripting
    • Links
    • Ubuntu
    • Unix File System
    • User groups
    • Linux
  • Other Topics
    • Finite state machine
    • Floating point
    • Googling
    • Setup
    • Unicode
    • Machine Learning
      • Artificial Intelligence
      • Jupyter Notebook
    • Blockchain
    • Front End
      • Single Page App
      • cqrs
      • css
      • Debounce
      • Dom, Virtual Dom
      • ADP
      • htmx
      • Island Architecture
      • Why use?
      • Java and front end tech
      • mermaidjs
      • Next JS
      • javascript
        • Debounce
        • design
        • Event loop
        • testing
        • Typescript
        • react
          • Design
          • learning
          • performance
          • React JS
          • testing
      • performance
      • Static website
    • jobs
      • Tooling
      • bash text editor - vim
      • VS code
      • scaling
        • AI Assistant
        • Debugging
        • General features and tips and tricks
        • IDE - Intellij
        • Plugins
        • Spring usage
  • persistance
    • ACID - Atomicity, Consistency, Isolation, Durability
    • BASE - Basic Availability, Soft state, Eventual Consistency
    • Buffer
    • Connection pooling
    • service
    • Database Migrations - flywaydb
    • Databases
    • Eventual Consistency
    • GraphQL
    • IDs
    • indexing
    • MongoDB
    • Normalisation
    • ORacle sql
    • Partitioning
    • patterns
    • PL SQL
    • Replication and Sharding
    • Repository pattern
    • Sharding
    • Snapshot
    • Strong Consistency
    • links
    • Files
      • Areas to think of
    • hibernate
      • ORM-hibernate
    • Indexes
      • Elastisearch
    • relationships
      • many-to-many
      • SDP
      • serverless
      • x-to-x-relationships
    • sql
      • Group by
      • indexes
      • Joins
      • Common mistakes
      • operators
      • performance
    • types
      • maven-commands-on-intellij
      • in-memory-database-h2
      • Key value database/store
      • Mongo DB
      • NoSQL Databases
      • Relational Database
      • Relational Vs Document Databases
  • Security
    • OAuth
    • API Keys
    • Certificates and JKS
    • Cluster Secruity
    • Communication Between Two Applications via TLS
    • Cookies & Sessions
    • CORS - Cross-Origin Resource Sharing
    • csrf
    • Encryption and Decryption
    • Endpoint Protection
    • JWT
    • language-specific
    • OpenID
    • OWASP
    • Secrets
    • Secruity
    • Servlet authentication and Authorization
    • vault
  • Testing, Maintainablity & Debugging
    • Service-virtualization and api mocking
    • a-test-bk
    • Build Monitor
    • Builds
    • Code coverage
    • consumer-driven contract testing
    • Fixity
    • Living Documentation
    • Mocks, Stubs & Doubles
    • patterns
    • Quality Engineering
    • Reading and working with legacy code
    • Reading
    • remote-debug-intellij
    • simulator
    • Technical Debt
    • Technical Waste
    • Test cases
    • Test Data Builders
    • Test Pyramids
    • Test Types
    • Testing Good Practice
    • Testing
    • What to prime
    • What to test
    • Debugging
      • Debugging in kubernetes or Docker
    • fixing
      • How to Deal with I/O Expense
      • How to Manage Memory
      • How to Optimize Loops
      • How to Fix Performance Problems
    • Legacy Code
      • Learning
      • Legacy code
      • techniques
    • libraries
      • assertj
      • Data Faker
      • Junit
      • mockito
      • Test Containers
      • Wiremock
      • Yatspec
    • Refactoring
      • Code Smells
      • refactoring-types
      • Refactoring
      • Technical Debt
      • pyramid-of-refactoring
        • Pyramid of Refactoring
    • Test first strategies
      • Acceptance Testing Driven Developement (ATDD)
      • Behaviour Driven Development/Design - BDD
      • Inside out
      • Outside in
      • Test driven development (TDD)
    • testing
      • Acceptance tests
      • How Much Testing is Enough?
      • Approval Testing
      • Bad Testing
      • End to end tests
      • Honeycomb
      • Testing Microservices
      • Mutation testing
      • Property based testing
      • Smoke Testing
      • social-unit-tests
      • solitary-unit-tests
      • Static Analysis Test
      • Unit testing
  • Version Control - Git
    • Branch by Abstraction
    • feature-branching
    • Git patches
    • Trunk Based Development
Powered by GitBook
On this page
  • Why override them
  • When to override
  • When not to override
  • Contract of Equals
  • How to override Equals()
  • links
  • Equals ==
  • How to override hashcode
  • Contract of hashcode
  • Contract of hashcode and equals
  • Links
  • override both hashcode and equals
  • Why test

Was this helpful?

  1. Languages
  2. Java
  3. Intermediate level java

Equals and Hashcode

PreviousEnumsNextEquals and hashcode

Last updated 3 years ago

Was this helpful?

  • https://www.baeldung.com/java-equals-hashcode-contracts

  • https://codejava.net/java-core/collections/understanding-equals-and-hashcode-in-java

Why override them

  • By default, each object has an equals() method, this does equality check on the object

    • So two object will be different if the actual created object is unique, they will have two different references.

    • two objects are equal if and only if they are stored in the same memory address.

  • By default, hascode returns an integer representation of the object memory address

    • this method returns a random integer that is unique for each instance.

    • this integer might change between several executions of the application and won't stay the same.

  • Equals

    • To remove object reference equality and have equality on state

    • it enables instances to serve as map keys or set elements with predictable, desirable behavior

  • Hashcode

When to override

  • It is when a class has a notion of logical equality that differs from mere object identity and a superclass has not already overridden equals

    • case for value/domain classes

    • ie String objects of same value (ie "hello") should be equal by definition of their value

When not to override

  • If not a domain object or type

  • Each instance of the class is inherently unique

    • ie Thread that represent active entities rather than values

  • There is no need for the class to provide a “logical equality” test.

    • ie java.util.regex.Pattern does not override, is a design decision

  • A superclass has already overridden equals, and the superclass behavior is appropriate for this class

    • ie Set inherits from AbstractSet

  • The class is private or package-private, and you are certain that its equals method will never be invoked.

    • To completely avoid this can override it like

    @Override
    public boolean equals(Object o) {
      throw new AssertionError(); // Method is never called
    }
  • Enums or value classes that uses instance control to ensure that at most one object exists with each value

    • as logical equality is the same as object identity

Contract of Equals

  • laws of equality

    • Reflexive:

      • For any non-null reference value x, x.equals(x) must return true

    • Symmetric:

      • For any non-null reference values x and y, x.equals(y) must return true if and only if y.equals(x) returns true

    • Transitive:

      • For any non-null reference values x, y, z, if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) must return true

    • Consistent:

      • For any non-null reference values x and y, multiple invocations of x.equals(y) must consistently return true or consistently return false, provided no information used in equals comparisons is modified

      • should perform only deterministic computations on memoryresident objects.

      • ie java.net.URL violates this, as equals uses the ip address of the hosts, and this can be different if it compares with url which gets a different ip from a source (ie dns)

    • Non-nullity

      • For any non-null reference value x, x.equals(null) must return false

  • All these laws must be tested

  • For an equals method to be useful, all of the elements in each equivalence class must be interchangeable from the perspective of the user.

How to override Equals()

  • Need:

    • Use the == operator to check if the argument is a reference to this object

      • If so, return true

      • For performance

    • Use the instanceof operator to check if the argument has the correct type

      • If not, return false.

      • Typically, the correct type is the class in which the method occurs.

      • Occasionally, it is some interface implemented by this class. Use an interface if the class implements an interface that refines the equals contract to permit comparisons across classes that implement the interface.

        • ie Map, List

    • Cast the argument to the correct type.

      • Because this cast was preceded by an instanceof test, it is guaranteed to succeed.

    • For each “significant” field in the class, check if that field of the argument matches the corresponding field of this object

      • If all these tests succeed, return true; otherwise, return false.

      • If the type is an interface, you must access the argument’s fields via interface methods

      • If the type is a class, you may be able to access the fields directly, depending on their accessibility

      • primitive fields, use ==, for non float/double

      • For float/double , use Float.compare or Double.compare

        • using Float.equals, leads to autoboxing on every comparsion

      • Use Objects.equals to avoid null pointer if they contain null

      • Performance can depend on the order the fields are compared

      • You must not compare fields that are not part of an object’s logical state

      • You need not compare derived fields, which can be calculated from “significant fields”

        • doing so may improve the performance of the equals method

  • IDE generation

    • Generally preferable

    • can be verbose and less readable

    • Help avoid mistakes in custom ones

    • But need to have tests

      • does not track changes in the class automatically

  • Use of libraries

    • lombok

    • Apache commons

links

  • https://techrocking.com/how-to-write-equals-method-in-java/

Equals ==

  • Tests only object reference

  • use for primitive

  • With Integer

    • Java keeps a cache (default 128) on integers

    • Creating Integer(1) and Integer("1"), they are == the same as the refere to the same object from the cache

    • Creating Integer(1000) and Integer("1000"), they are not == the same as the refer to the different objects (as they cannot use the cache) and two new integer objects are created

  • Args from main and Strings

    • if args[0] (is "hello") and "hello", then both are equals. But args[0] is an object creaed on the heap while "hello" is from the String pool. thus == will be false, but equals() will be true

    • Never use ==

    • When Strings are concat using + in a field, this will be done at compile time, but when done in say predicate of if argument this will be done at runtime hence createing different object. Thus different == will return false when comparing the field with the one created at runtime

How to override hashcode

  • https://techrocking.com/how-to-write-hashcode-in-java/

  • Use of libraries

    • lombok

    • Apache commons

Contract of hashcode

  • TBC - effective java

Contract of hashcode and equals

  • If two objects are equal according to the equals(Object) method, then calling the hashcode() method on each of the two objects must produce the same integer result.

  • developers should override both methods in order to achieve a fully working equality mechanism — it's not enough to just implement the equals() method.

Links

  • https://www.youtube.com/watch?v=IwUwIrz9Ge8

override both hashcode and equals

  • If hashcode is not also overridden at the same time as equals, then collections that use the hashcode, will find that hashcode will create a new value for equal objects (that which was defined by user overidden equals() method)

    • This leads to, for example a hashset, containing two different elements but are defined as equals, but they should not be (due to Set contract). As the hashset uses the hashcode define uniqueness

  • Contract

    • When the hashCode method is invoked on an object repeatedly during an execution of an application, it must consistently return the same value, provided no information used in equals comparisons is modified.

      • This value need not remain consistent from one execution of an application to another

    • If two objects are equal according to the equals(Object) method, then calling hashCode on the two objects must produce the same integer result.

    • If two objects are unequal according to the equals(Object) method, it is not required that calling hashCode on each of the objects must produce distinct results. However, the programmer should be aware that producing distinct results for unequal objects may improve the performance of hash tables

  • Override both or none

Why test

  • To make sure changes to the object (number of fields, change of type) do not break these methods

  • Do not have to test if using proven library ie lombok

  • There ar libraries that test your equals method (https://jqno.nl/equalsverifier/)

Equals and Hashcode
Why override them
When to override
When not to override
Contract of Equals
How to override Equals()
links
Equals ==
How to override hashcode
Contract of hashcode
Contract of hashcode and equals
override both hashcode and equals
Why test