Learning
  • Software Engineering Golden Treasury
  • Trail Map
  • Caching
    • Alternatives to use before using cache
    • Caching Architecture
    • Cache Invalidation and Eviction
    • Cache Patterns
    • Cache
    • Consistency
    • Distributed Caching
    • Issues with caching
    • Types of caches
  • Career
    • algo types
    • Backend Knowledge
    • Burnout
    • consultancy
    • dev-level
    • Enterprise Developer
    • how-to-get-in-tech-from-other-job
    • how-to-get-into-junior-dev-position
    • induction
    • Interview
    • junior
    • mid
    • New Job
    • paths
    • Principle/staff Engineer
    • Requirements for job
    • Senior Dev capabilities
    • learning
      • automating-beginner
      • company1
        • analyst-progression
        • core-eng-progression
        • dev-progression
        • perf-eng-progression
        • soft-deliv-progression
    • mentoring
      • mentor-resources
    • recruitment
      • questions
      • Spotting posers
  • Computer Science
    • boolean-algebra
    • Compiler
    • Finite State Machine
    • Hashing
    • Algorithms
      • Breadth Firth Search
      • complexity
      • Depth First Search
      • efficiency
      • Sliding Window
      • sorting
    • data-structures
      • AVL Trees
      • data-structures
      • Linked List
    • machines
      • Intel Machine
      • Turing Machine
      • von neumann machine
      • Zeus Machine
  • devops
    • The 5 Ideals
    • microservice
    • Artifact repository
    • Bugs and Fixes
    • Build police
    • cloud-servers
    • Deployments
    • Environments
    • GitOps
    • handling-releases
    • infrastructure-as-code
    • System Migrations
    • SDP
    • On Premises Hosting
    • Properties/configuration
    • Release process
    • Release
    • Roll Outs
    • serverless
    • Serverless
    • Cloud Services
    • Versioning
    • AWS
      • deploy-docker-esc
      • cloud-practitiioner-essentials-notes
        • Module 1 - Intro to AWS
        • Module 2 Compute in the cloud
        • Module 3 Global Infrastructure and Reliability
        • Module 4 Networking
        • Module 5 Storage and Databases
        • Security
        • 7 Monitoring and Aanlytics
        • 8 Pricing and Support
        • 9 Migration and Innovation
      • developer-associate
        • AWS Elastic Beanstalk
    • build-tools
      • Managing dependecies
      • Apache ANT
      • Gradle
        • Custom Plugins
        • local-jars
      • Project Management - maven
        • Archtypes
        • Build Lifecycles
        • Customising build lifecycle
        • Dependencies
        • Directory layout
        • jar-files
        • one-to-one
        • Modules
        • Phases
        • Maven Plugins
        • POM
        • profiles
        • setup
        • Starting a maven project
        • wrapper
    • CI/CD
      • Continuous Delivery
      • zookeeper
      • Continuous Integration (CI)
      • github-actions
      • Pipeline
      • Teamcity
    • Cloud computing
      • Overview
      • Service Models
      • Cloud Services
    • containers
      • Best Practices
      • Docker
    • Infrastructure
      • IT Infrastructure Model
      • Non functional Attributes (Quality Attributes)
        • Infrastructure Availability
        • Performance
        • Secruity
    • monitoring
      • Alerting
      • Monitoring & Metrics
      • Metrics
      • Ready pages
      • Splunk
      • Status pages
      • notes-devops-talk
      • logging
        • logging
        • issues
        • Logging
        • Logging
    • Service mesh
      • Service Discovery
      • Istio
    • Terraform
    • container-management
      • Kubernetes
        • commands-glossary
        • OLTP
        • config-maps
        • Links
        • ingress
        • SDP
        • minikube
        • filter
        • indexes
        • sidecar
        • continuous-deployment
  • General Paradigms
    • CAP theorem
    • designing data-intensive applications summary
    • a-philosophy-of-software-design-notes
    • Aspect oriented Programming (AOP)
    • Best Practice
    • Cargo Cult
    • Clean Code
    • Coding reflections
    • Cognitive Complexity
    • Complexity
    • Conventions
    • Design discussions
    • Design
    • Error Handling Checklist
    • Exceptions
    • Feature Flags/toggle
    • Functional requirements
    • Last Responsible Moment
    • Lock In
    • Named Arguments
    • Naming
    • Performance Fallacy
    • Quality
    • Redesign of a system
    • Resuse vs Decoupling
    • Rules for software designs
    • Sad Paths
    • Scaling Webservices
    • Scientific Method
    • stream-processing
    • Upstream and Downstream
    • Patterns
      • Client-SDK-Pattern
      • ORM
      • Api gateway
      • Business Rules Engine
      • cache
      • Composition Root
      • Dependency Injection Containers
      • Dependency Injections
      • Double Dispatch
      • Exception Handling
      • Gateway pattern
      • Humble Object
      • Inheritance for reuse
      • Null Object Pattern
      • Object Mother
      • Patterns
      • Collection pipeline pattern
      • Service Locator
      • Setter constructor
      • Static factory method
      • Step Builder Pattern
      • telescopic constructors
      • Toggles
      • API
        • Aims of API designs
        • Avoid Checked Exceptions
        • Avoid returning nulls
        • Be defensive with your data
        • convience-methods
        • Fluent Interfaces
        • Loan Pattern
        • prefer-enums-to-boolean-returns
        • return-meaningful-types
        • Small intefaces
        • Support Lambdas
        • Weakest type
      • Gang of Four
        • Builder
        • Factory Pattern
        • Strategy Pattern
        • Template
        • abstract Factory
        • Adapter
        • Bridge Pattern
        • Chain of responsibility
        • Command Pattern
        • Composite Design Pattern
        • Decorator Pattern
        • Facade Pattern
        • Flyweight pattern
        • Guard Clause
        • Interpreter
        • html
        • Mediator Pattern
        • Memento Pattern
        • Observer
        • Prototype
        • Proxy
        • Singleton
        • State Pattern
        • Visitor Pattern
    • Architecture
      • Entity Component System
      • Integration Operation Segregation Principle
      • Adaptable Architecture
      • Architecture
      • C4 Modelling
      • cell-based
      • Clean/Hexagonal Architecture
      • Codifying architecture
      • Correct By configuration
      • Cost Base Architecture
      • Data Oriented Design
      • deliberate
      • Domain oriented DOMA
      • Event Driven Architecture
      • Evolutionary Architecture
      • examples
      • Feature Architecture
      • Framework and Libraries
      • functional-core-imperative-shell
      • Layered Architecture
      • Micro services
      • monoliths-to-services
      • Multi tiered Architecture
      • Multi tenant application
      • Resilient Architecture
      • stage event driven architecture (SEDA)
      • links spring rest app
      • Tomato Architecture
      • Tooling
      • Types of architecture
      • checklist
        • Checklist for new project
        • Back end Architecture Checklist
        • Front end Architecture Checklist
        • Mobile Architecture Checklist
      • Cloud Patterns
        • Command and Query Responsibility Segregation (CQRS)
        • Event Sourcing & CQRS
        • Asynchronous Request and Reply
        • Circuit Breaker
        • Retry
        • Sidecar
        • Strangler pattern
      • Domain driven design
        • value & entity
      • Microservices
        • Alternatives to choosing microservices first when scaling
        • Consistency in distributed systems
        • 12 Factor applications
      • Modularity
        • Module monolith vs Microservices
        • Spring Moduilth
      • Architecture Patterns
        • Hexagonal architecture
        • Inverting dependencies
        • Layering & Dependency Inversion Principle
        • Mappings
        • Vertical Slice architecture
        • Web Client Server
        • domain
          • Business and Data Layers Separation
          • DTO
          • Domain Model Pattern
          • Domain Object
          • Transaction Script/ Use Case pattern
        • Enterprise Patterns
          • Concurrency
          • Distribution strategies
          • Domain layer patterns
          • Layering/organisation of code
          • Mapping to datasource
          • Session State
        • Usecases
          • Use case return types
      • Serverless
        • Knative
    • Design architecture aims
      • back of envelope
      • Design ideas
      • Design mistakes
      • high-volume-design
      • ISO Quality Attributes
      • Non functional requirements
      • “Designing for Performance” by Martin Thompson
      • High Performance
      • Qaulity Attributes
        • Availability
        • System Availability
        • Fault Tolerance
        • interoperability
        • Latency
        • Maintability
        • Modifiability
        • Performance
        • Readability
        • Reliability
        • Scalability vs performance
        • Scalability
        • Scaling
        • statelessness
        • Testability
        • Throughput
      • System Design
      • web-scalability-distributed-arch
        • scalable-and-distributed-web-architecture
    • README
      • Conflict-free Replicated Data Type
      • Fallacies
      • Load balancing
      • Rate Limiting
      • Transactions
    • Patterns of Enterprise Application Architecture
      • Repository Pattern
      • Rules Engines
      • scatter-gather
      • Specification Design Pattern
      • Table Driven Development
      • Workflow Design Patterns
        • Triggers
    • Principles
      • Do It Or Get Bitten In The End
      • Dont Repeat Yourself
      • Habitability
      • Keep it simple
      • Responsibility Driven Design
      • Ya Ain’t Gonna Need It
      • Conceptual Overhead
      • CUPID
      • Reuse existing interfaces
      • Facts and Fallacies
      • locality of behaviour
      • Separation of Concerns
      • Simplicity
      • SLAP principle
      • Step down rule
      • Unix Philosophy
      • Wrong abstractions
      • SOLID
        • 1. Single Responsibility Principle
        • 2. Open Close Principle
        • 3. Liskov Substitution Principle
        • 4. Interface Segregation Principle
        • 5. Dependency Inversion Principle
        • GRASP (General Responsibility Assignment Software Principles)
        • Solid for packages
          • jobs
          • CCP
          • CRP
          • REP
          • egress
          • gossip-protocol
        • STUPID
    • programming-types
      • Coding to Contract/Interface
      • Links
      • Declarative vs Imperative Programming Languages
      • defensive-programming
      • Design by contract
      • Domain Specific Languages (DSL)
      • Event Driven
      • file-transfers
      • Logical Programming
      • Mutability
      • Self Healing
      • Simplicity
      • Type Driven Design
      • Value objects
      • Aspect Oriented Programming
      • Concurrent and Parallel Programming
        • Actor Model
        • Asynchronous and Synchronous Programming
        • Batch processing
        • Concurrency Models
        • SAP
        • Multithreading
        • Non Blocking IO
        • Optimistic vs Pessimistic Concurrency
        • Thread per connection or request model
        • Actor
        • aysnchronous-tasks
          • Computational Graphs
          • Divide and conquer
          • Future
          • Thread Pool
        • barriers
          • Barriers
          • Race conditions
        • design
          • agglomeration
          • Communication
          • Mapping
          • Partitioning
        • Liveness
          • Abandoned Lock
          • Deadlocks
          • Livelock
          • Starvation
        • locks
          • Read write lock
          • Reentrant lock
          • Try Lock
        • Mutual Exclusion
          • Data Races
          • Mutual Exclusion AKA Locks
        • performance
          • Amdahl's Law
          • Latency, throughput & speed
          • Measure Speed up
        • synchronization
          • Condition variable
          • producer consumer pattern
          • Semaphore
        • Threads and processes
          • Concurrent and parallel programming
          • Daemon Thread
          • Execution Scheduling
          • sequential-parallel
          • Thread Lifecycle
          • threads-and-processes
      • Functional Programming
        • Currying
        • design-patterns-to-func
        • imperative-programming
        • First class functions
        • Functional Looping
        • Higher Order Functions
        • Immutability
        • Issues with functional Programming
        • Lambda calculus
        • Lazy & Eager
        • map
        • Monad
        • Railway Programming
        • Recursion
        • Reduce
        • referential-transparacy
        • Referential transparency
        • Supplier
      • oop-design
        • Issues with object oriented code
        • Aggregation
        • Anti Patterns
        • Association
        • class-and-objects
        • Composition
        • general-laws-of-programming
        • general-notes
        • Getters and Setters
        • Inside out programming
        • Inversion of control
        • oop-design
        • Other principles
        • Outside in programming
        • Readability
        • Why OO is bad
        • README
          • abstraction
          • encapsulation
          • inheritance
          • Polymorphism
        • clean-code
          • Code Smells
          • Comments
          • Naming
          • CLEAN design
            • code is assertive
            • Cohesion
            • Connascence
            • Coupling
            • Encapsulation
            • Loose Coupling
            • Nonredundant code
      • Reactive Programming
        • reactive-programming
    • Projects and Software types
      • Applicatoin Development
      • Buying or creating software
      • Console Applications
      • Embedded Software development
      • Enterprise
      • Framework Development
      • Games
      • Library development
      • Rewriting
      • White Label Apps
    • State Machines
      • Spring State Machine
  • Other
    • 10x devs
    • Aim of software
    • Choosing Technologies
    • Coding faster
    • Component ownership
    • developer-pain-points
    • Developer Types
    • Effective Software design
    • Full Stack Developer
    • Good coder
    • Issues with Software Engineering and Engineers
    • Learning
    • Logic
    • Role
    • Software Actions
    • Software craftmanship
    • Software Designed
    • Software Engineering
    • Software
    • article-summaries
      • General notes
      • Summary of The Grug Brained Developer A layman's guide to thinking like the self-aware smol brained
      • improve-backend-engineer
      • Optimising Api
      • Simple and Easy
    • README
  • Hardware
    • Cpu memory
    • Storage
  • Integration
    • GRPC
    • API
    • Apis and communications between apps
    • asynchronous and synchronous communications
    • Batch Processing
    • Communications between apps
    • Delivery
    • Distributed Computing
    • Entry point
    • Event Source
    • SDP
    • egress
    • Graphql
    • Idempotency
    • Libraries
    • Long Polling
    • Multiplexing & Demultiplexing
    • Publish Subscribe
    • Push
    • Request & Response
    • REST
    • Remote Method Invocation
    • Remote Procedure Calls
    • Server Sent Events
    • Short Polling
    • Sidecars
    • SOAP
    • Stateless and Stateful
    • Streams
    • Third Party Integrations
    • wdsl
    • Web Services
    • Webhooks
    • repository
    • Kafka
      • Kafka Streams
    • message-queues
      • ActiveMQ
      • Dead Letter Queue
      • JMS
      • Messaging
  • Languages
    • C
    • Choosing A Language
    • cobol
    • Composite Data Types
    • creating
    • Date time
    • Numbers
    • Pass by value vs Pass by reference
    • Primitive Data Types
    • REST anti-patterns
    • Rust
    • Scripting
    • Static typing
    • string
    • Task Oriented Language
    • assembly
    • Getting started
      • Functional Concepts
    • cpp
    • Java
      • Code style
      • Garbage Collection
      • Intellij Debugging
      • Artifacts, Jars
      • Java internals
      • Java resources
      • Java versions
      • JShell
      • Libraries
      • opinionated-guide
      • Starting java
      • Java Tools
      • Why use java
      • Advanced Java
        • Annotations
        • API
        • Database and java
        • Debugging Performance
        • Files IO
        • Finalize
        • JDBC
        • jni
        • Libraries
        • Logging
        • SAP
        • Memory Management
        • Modules
        • OTher
        • Packaging Application
        • Pattern matching
        • performance
        • Properties
        • Reference
        • reflection
        • Scaling
        • Scheduling
        • secruity
        • Serilization
        • Time in Java
        • validation
        • Vector
        • Concurrency and Multithreaading
          • Akka
          • ExecutorCompletionService
          • Asynchronous Programming
          • Concurrency and Threads
          • CountDownLatch
          • Conccurrent Data Structures
          • Executor Service
          • Futures
          • reactive
          • Semaphore
          • structured concurrency
          • Threadlocal
          • Threads
          • Virtual Threads
          • Mutual Exclusion
            • Atomic
            • Synchronized
            • Thread safe class
            • Threads
        • debug
          • heap-dumps
          • thread-dumps
        • functional
          • Collectors
          • Exception Handling
          • Flatmap
          • Functional Programming
          • Generators
          • Immutability
          • issues
          • Optional
          • Parallel Streams
          • Reduce
        • networks
          • HTTP client
          • servlet-webcontainers
          • sockets
          • ssl-tls-https
      • Basics of java
        • compilation
        • computation
        • Conditonal/Flow control
        • Excuting code
        • Instructions
        • Looping/Iterating
        • memory-types-variables
        • methods
        • Printing to screen/debugging
        • Setup the system
        • Data structures
          • Arrays
          • Arayslist/list
          • Map
      • Effective Java notes
        • Creating and Destroying Objects
        • Methods Common to All Objects
        • best-practice-api
        • Classes and Interfaces
        • Enums and Annotations
        • Generics
      • framework
        • aop
        • bad
        • Dagger
        • Databases
        • Lombok
        • Mapstruct
        • netty
        • resliance4j
        • RxJava
        • Vert.x
        • Spring
          • Spring Data Repositories
          • actuator
          • cloud-native
          • H2 Db in Spring
          • Initializrs
          • JDBC Template
          • Java Persistence API (JPA)
          • kotlin
          • Pitfalls and advice
          • PRoxies
          • Reactive
          • spring security
          • spring-aop
          • Spring Boot
          • spring-jdbc
          • Spring MVC
          • Spring Testing
          • Testing
          • Transaction
          • patterns
            • Component Scan Patterns
            • Concurrency
            • Decorator Pattern in Spring
        • Micronaut
          • DI
        • Quarkus
          • database
          • Links
      • Intermediate level java
        • String Class
        • Assertions
        • Casting
        • Clonable
        • Command line arguments
        • Common Libraries/classes
        • Comparators
        • Where to store them?
        • Shallow and Deep Copy
        • Date and Time
        • Enums
        • Equals and Hashcode
        • Equals and hashcode
        • Exceptions
        • Final
        • Finally
        • Generics
        • incrementors
        • Null
        • packages and imports
        • Random numbers
        • Regex
        • Static
        • toString()
        • OOP
          • Accessors
          • Classes
          • Object Oriented Programming
          • Constructors
          • Fields/state
          • Inheritence
          • Interfaces
          • Methods/behaviour
          • Nested Classes
          • Objects
          • Static VS Instance
          • Whether to use a dependency or static method?
        • Other Collections
          • Other Collections
          • Arraylist vs Linkedlist
          • LinkedHashMap
          • Linked List
          • Priority queue
          • Sequenced Collections
          • Set
          • Shallow vs Deep Copy
          • Time Complexity of Collections
          • What Collection To use?
    • kotlin
      • Domain Specific Language
      • learning
      • Libraries
      • Personal Roadmap
      • Links
    • Nodejs
      • Performance
  • Management & Workflow
    • Agile
    • Take Breaks
    • # Communication
    • Engineering Daybook
    • Estimates
    • Feedback Loops
    • Little's law
    • Managing Others
    • poser.
    • Presentations
    • self-improvement
    • software-teams
    • Task List
    • trade-off
    • Types of devs
    • Type of work
    • Waterfall Methodology
    • coding-process
      • Bugs
      • Code Review
      • Code Reviews
      • Documentation
      • Done
      • Handover
      • Mob Programming
      • Navigate codebase
      • Pair Programming
      • Pull Requests
      • How to do a story
      • Story to code
      • Trunk based development
      • Xtreme Programming (XP)
      • debugging
        • 9 Rules of Thumb of Dubugging
        • Debugging
        • using-debugger
      • Legacy code
        • Legacy crisis
        • Working with legacy code
    • Managing work
      • Theory of constraints
      • Distributed Teams
      • estimations
      • Improving team's output
      • Kanban
      • Kick offs
      • Retrospectives
      • Scrum
      • Sign offs
      • Stand ups
      • Time bombs
      • Project management triangle
    • Notion
    • recruitment
      • In Person Test
      • Interviews
      • Unattended test
  • Networks
    • Content Delivery Network - CDN
    • DNS
    • cache control
    • Cookies and Sessions
    • Docker Networking
    • Duplex
    • Etags
    • HTTP Cache
    • HTTP - Hyper Text Transfer Protocol
    • HTTP/2
    • Http 3
    • Internet & Web
    • iptables
    • Keep alive
    • Leader Election
    • Load balancer
    • long-polling
    • Network Access Control
    • Network Address Translation (NAT)
    • Network Layers
    • Nginx
    • OSI network model
    • Persistent Connection
    • Polling
    • Proxy
    • Quic
    • reverse-proxy
    • servers
    • Server sent events (SSE)
    • SSH
    • Streaming
    • Timeouts
    • Url Encoding
    • Web sockets
    • WebRTC (Web Real-Time Communication)
    • Wireshark
    • tcp/ip
      • Congestion
      • IP - Internet Protocol
      • TCP - Transmission Control Protocol
  • Operating Systems
    • Cloud Computing
    • Distributed File Systems
    • Distributed Shared Memory
    • Input/Output Management
    • Inter-Process Communication
    • Threads and Concurrency
    • Virtualization
    • Searching using CLI
    • Bash and scripting
    • Booting of linux
    • makefile
    • Memory Management
    • Processes and Process Management
    • Scheduling
    • Scripting
    • Links
    • Ubuntu
    • Unix File System
    • User groups
    • Linux
  • Other Topics
    • Finite state machine
    • Floating point
    • Googling
    • Setup
    • Unicode
    • Machine Learning
      • Artificial Intelligence
      • Jupyter Notebook
    • Blockchain
    • Front End
      • Single Page App
      • cqrs
      • css
      • Debounce
      • Dom, Virtual Dom
      • ADP
      • htmx
      • Island Architecture
      • Why use?
      • Java and front end tech
      • mermaidjs
      • Next JS
      • javascript
        • Debounce
        • design
        • Event loop
        • testing
        • Typescript
        • react
          • Design
          • learning
          • performance
          • React JS
          • testing
      • performance
      • Static website
    • jobs
      • Tooling
      • bash text editor - vim
      • VS code
      • scaling
        • AI Assistant
        • Debugging
        • General features and tips and tricks
        • IDE - Intellij
        • Plugins
        • Spring usage
  • persistance
    • ACID - Atomicity, Consistency, Isolation, Durability
    • BASE - Basic Availability, Soft state, Eventual Consistency
    • Buffer
    • Connection pooling
    • service
    • Database Migrations - flywaydb
    • Databases
    • Eventual Consistency
    • GraphQL
    • IDs
    • indexing
    • MongoDB
    • Normalisation
    • ORacle sql
    • Partitioning
    • patterns
    • PL SQL
    • Replication and Sharding
    • Repository pattern
    • Sharding
    • Snapshot
    • Strong Consistency
    • links
    • Files
      • Areas to think of
    • hibernate
      • ORM-hibernate
    • Indexes
      • Elastisearch
    • relationships
      • many-to-many
      • SDP
      • serverless
      • x-to-x-relationships
    • sql
      • Group by
      • indexes
      • Joins
      • Common mistakes
      • operators
      • performance
    • types
      • maven-commands-on-intellij
      • in-memory-database-h2
      • Key value database/store
      • Mongo DB
      • NoSQL Databases
      • Relational Database
      • Relational Vs Document Databases
  • Security
    • OAuth
    • API Keys
    • Certificates and JKS
    • Cluster Secruity
    • Communication Between Two Applications via TLS
    • Cookies & Sessions
    • CORS - Cross-Origin Resource Sharing
    • csrf
    • Encryption and Decryption
    • Endpoint Protection
    • JWT
    • language-specific
    • OpenID
    • OWASP
    • Secrets
    • Secruity
    • Servlet authentication and Authorization
    • vault
  • Testing, Maintainablity & Debugging
    • Service-virtualization and api mocking
    • a-test-bk
    • Build Monitor
    • Builds
    • Code coverage
    • consumer-driven contract testing
    • Fixity
    • Living Documentation
    • Mocks, Stubs & Doubles
    • patterns
    • Quality Engineering
    • Reading and working with legacy code
    • Reading
    • remote-debug-intellij
    • simulator
    • Technical Debt
    • Technical Waste
    • Test cases
    • Test Data Builders
    • Test Pyramids
    • Test Types
    • Testing Good Practice
    • Testing
    • What to prime
    • What to test
    • Debugging
      • Debugging in kubernetes or Docker
    • fixing
      • How to Deal with I/O Expense
      • How to Manage Memory
      • How to Optimize Loops
      • How to Fix Performance Problems
    • Legacy Code
      • Learning
      • Legacy code
      • techniques
    • libraries
      • assertj
      • Data Faker
      • Junit
      • mockito
      • Test Containers
      • Wiremock
      • Yatspec
    • Refactoring
      • Code Smells
      • refactoring-types
      • Refactoring
      • Technical Debt
      • pyramid-of-refactoring
        • Pyramid of Refactoring
    • Test first strategies
      • Acceptance Testing Driven Developement (ATDD)
      • Behaviour Driven Development/Design - BDD
      • Inside out
      • Outside in
      • Test driven development (TDD)
    • testing
      • Acceptance tests
      • How Much Testing is Enough?
      • Approval Testing
      • Bad Testing
      • End to end tests
      • Honeycomb
      • Testing Microservices
      • Mutation testing
      • Property based testing
      • Smoke Testing
      • social-unit-tests
      • solitary-unit-tests
      • Static Analysis Test
      • Unit testing
  • Version Control - Git
    • Branch by Abstraction
    • feature-branching
    • Git patches
    • Trunk Based Development
Powered by GitBook
On this page
  • What
  • How
  • Why
  • Server Selection Strategies
  • Consistent hashing
  • Types
  • Layer 4
  • layer 7
  • Links
  • Nginix & Proxy servers

Was this helpful?

  1. Networks

Load balancer

What

  • They’re the magic sauce that makes scaling horizontally possible. They route incoming requests to one of many application servers that are typically clones / mirror images of each other and send the response from the app server back to the client.

    • Any one of them should process the request the same way so it’s just a matter of distributing the requests across the set of servers so none of them are overloaded.

  • Problem: When a server simultaneously receives a lot of requests, it can slow down (throughput reduces, latency rises). After a point it may even fail (no availability).

    • Solution: You can give the server more muscle power (vertical scaling) or you can add more servers (horizontal scaling).

      • With horizontal scaling, you got to work out how the income requests get distributed to the various servers - which requests get routed to which servers and how to ensure they don't get overloaded too?

      • In other words, how do you balance and allocate the request load?

  • load balancers are like traffic managers who direct traffic.

  • load balancers can be thought of as reverse proxies

How

  • A load balancer's job is to sit between the client and server (but there are other places it can be inserted) and work out how to distribute incoming request loads across multiple servers, so that the end user (client's) experience is consistently fast, smooth and reliable.

Why

  • Used to maintain availability and throughput.

Server Selection Strategies

  • How it decides how to route and allocate request traffic

  • every time you add a server, you need to let your load balancer know that there is one more candidate for it to route traffic to.

  • If you remove a server, the load balancer needs to know that too.

  • The load balanacer configuration ensures that the load balancer knows how many servers it has in its go-to list and which ones are available.

  • the load balancer can be kept informed on each server's load levels, status, availability, current task and so on.

  • Approaches

    • A naive approach to this is for the load balancer to just randomly pick a server and direct each incoming request that way.

      • randomness can cause problems and "unbalanced" allocations where some servers get more loaded than others, and that could affect performance of the overall system negatively.

    • Round Robin and Weighted Round Robin

      • How we process lists that loop

        • you start at the first item in the list, move down in sequence, and when you're done with the last item you loop back up to the top and start working down the list again.

      • load is pretty evenly distributed across your servers in a simple-to-understand and predictable pattern.

      • Adding weights to the server

        • Causes preferences to some servers over others

        • the total traffic will be split up in proportion to those weights and allocated accordingly to the servers that have power proportionate to the volume of requests.

    • Load-based server selection

      • work out the current capacity, performance, and loads of the servers in their go-to list and allocate dynamically according to current loads and calculations as to which will have the highest throughput, lowest latency etc.

      • by monitoring the performance of each server and deciding which ones can and cannot handle the new requests.

    • IP Hashing based selection

      • to hash the IP address of incoming requests, and use the hash value to determine which server to direct the request too

      • ie If I had 5 servers available, then the hash function would be designed to return one of five hash values, so one of the servers definitely gets nominated to process the request.

      • useful where you want requests from a certain country or region to get data from a server that is best suited to address the needs from within that region,

      • where your servers cache requests so that they can be processed fast.

        • you want to ensure that the request goes to a server that has previously cached the same request, as this will improve speed and performance in processing and responding to that request.

        • If your servers each maintain independent caches and your load balancer does not consistently send identical requests to the same server, you will end up with servers re-doing work that has already been done in as previous request to another server, and you lose the optimization that goes with caching data.

    • Path or Service based selection

      • to route requests based on their "path" or function or service that is being provided.

      • ie if you're buying flowers from an online florist, requests to load the "Bouquets on Special" may be sent to one server and credit card payments may be sent to another server.

        • If only one in twenty visitors actually bought flowers, then you could have a smaller server processing the payments and a bigger one handling all the browsing traffic.

Consistent hashing

  • https://www.cs.cmu.edu/~adamchik/15-121/lectures/Hashing/hashing.html

    • is that hashing converts an input into a fixed-size value, often an integer value (the hash).

  • One of the key principles for a good hashing algorithm or function is that the function must be deterministic, which is a fancy way for saying that identical inputs will generate identical outputs when passed into the function.

  • Sometimes the hashing function can generate the same hash for more than one input - this is not the end of the world and there are ways to deal with it

    • when more than one input deterministically generates the same output, it's called a "collision".

  • Example

    • Let's say you have 5 servers to allocate loads across. An easy to understand method would be to hash incoming requests (maybe by IP address, or some client detail), and then generate hashes for each request. Then you apply the modulo operator to that hash, where the right operand is the number of servers.

request#1 => hashes to 34
request#2 => hashes to 23
request#3 => hashes to 30
request#4 => hashes to 14

// You have 5 servers => [Server A, Server B ,Server C ,Server D ,Server E]

// so modulo 5 for each request...

request#1 => hashes to 34 => 34 % 5 = 4 => send this request to servers[4] => Server E

request#2 => hashes to 23 => 23 % 5 = 3 => send this request to servers[3] => Server D

request#3 => hashes to 30 => 30 % 5 = 0 => send this request to  servers[0] => Server A

request#4 => hashes to 14 => 14 % 5 = 4 => send this request to servers[4] => Server E
  • Adding Servers, and Handling Failing Servers

    • Issues

      • we could add a sixth server but that would never get any traffic because our mod operator is 5, and it will never yield a number that would include the newly added 6th server.

      • he hashing function (refer to the pseudo code snippet above) still thinks there are 5 servers, and the mod operator generates a range from 0-4. But we only have 4 servers now that one has failed, and we are still sending it traffic.

    • Solution consistent hashing

      • Consistent hashing does not eliminate the problems, especially adding new servers. But it does reduce the problems a lot. the underlying downside still exists - yes, but to a much smaller extent, and that itself is a valuable improvement in very large scale systems.

      • Consistent hashing applies a hash function to incoming requests and the servers. The resulting outputs therefore fall in a set range (continuum) of values. This detail is very important.

      • https://www.youtube.com/watch?v=tHEyzVbl4bg

Types

Layer 4

  • Layer 4 load balancing, operating at the transport level, manages traffic based on network information such as application ports and protocols without visibility into the actual content of messages. This is an effective approach for simple packet-level load balancing. The fact that messages are neither inspected nor decrypted allows them to be forwarded quickly, efficiently, and securely. On the other hand, because layer 4 load balancing is unable to make decisions based on content, it’s not possible to route traffic based on media type, localization rules, or other criteria beyond simple algorithms such as round-robin routing.

Pros

  • Ideal for simple packet-level load balancing

  • Because it doesn’t consider the data, it’s fast and efficient.

  • More secure because packets aren’t looked into. In the event that it gets compromised, no one can see the data.

  • Does not need to decrypt the content—it merely forwards them

  • Uses NAT

  • Maintains only one connection between client and server NATed so your load balancer can serve a maximum number of TCP connections = to (number of servers * max connections per server)

cons

  • Not capable of smart load balancing based on the content

  • Can’t do real microservices

  • Needs to be sticky as it is a stateful protocol. Once a connection is established, it goes to one server at the backend. - All packets flowing to this connection goes to one server. The next connection will then pick another server based on the algorithm.

layer 7

  • Layer 7 load balancing operates at the application level, using protocols such as HTTP and SMTP to make decisions based on the actual content of each message. Instead of merely forwarding traffic unread, a layer 7 load balancer terminates network traffic, performs decryption as needed, inspects messages, makes content-based routing decisions, initiates a new TCP connection to the appropriate upstream server, and writes the request to the server.

  • layer 7 load balancing allows more intelligent load balancing decisions and content optimizations. By viewing or actively injecting cookies, the load balancer can identify unique client sessions to provide server persistence, or “sticky sessions,” sending all client requests to the same server for greater efficiency. Packet-level visibility allows content caching to be used, holding frequently accessed items in memory for easy retrieval. Importantly for modern organizations, layer 7 load balancing provides the intelligence to handle protocols that piggyback or multiplex requests onto a single connection to optimize traffic and reduce overhead.

Pros

  • Offers smart routing based on the URL

  • Provides caching

cons

  • More expensive

  • Requires decrypting

  • In terms of security, you have to share your certificate with the load balancers. If an attacker gets access to the load balancer, they automatically have access to all your data.

  • Its proxy creates multiple connections—client to proxy/proxy to server—so you are bounded by the max TCP connection on your load balancer.

Links

  • https://blog.containership.io/7-things-that-nobody-told-you-about-load-balancers-that-you-ought-to-know

Nginix & Proxy servers

  • https://nginx.org/en/

  • https://www.nginx.com/resources/wiki/

  • https://en.wikipedia.org/wiki/Nginx

  • https://en.wikipedia.org/wiki/Proxy_server

PreviousLeader ElectionNextlong-polling

Last updated 2 years ago

Was this helpful?