Learning
  • Software Engineering Golden Treasury
  • Trail Map
  • Caching
    • Alternatives to use before using cache
    • Caching Architecture
    • Cache Invalidation and Eviction
    • Cache Patterns
    • Cache
    • Consistency
    • Distributed Caching
    • Issues with caching
    • Types of caches
  • Career
    • algo types
    • Backend Knowledge
    • Burnout
    • consultancy
    • dev-level
    • Enterprise Developer
    • how-to-get-in-tech-from-other-job
    • how-to-get-into-junior-dev-position
    • induction
    • Interview
    • junior
    • mid
    • New Job
    • paths
    • Principle/staff Engineer
    • Requirements for job
    • Senior Dev capabilities
    • learning
      • automating-beginner
      • company1
        • analyst-progression
        • core-eng-progression
        • dev-progression
        • perf-eng-progression
        • soft-deliv-progression
    • mentoring
      • mentor-resources
    • recruitment
      • questions
      • Spotting posers
  • Computer Science
    • boolean-algebra
    • Compiler
    • Finite State Machine
    • Hashing
    • Algorithms
      • Breadth Firth Search
      • complexity
      • Depth First Search
      • efficiency
      • Sliding Window
      • sorting
    • data-structures
      • AVL Trees
      • data-structures
      • Linked List
    • machines
      • Intel Machine
      • Turing Machine
      • von neumann machine
      • Zeus Machine
  • devops
    • The 5 Ideals
    • microservice
    • Artifact repository
    • Bugs and Fixes
    • Build police
    • cloud-servers
    • Deployments
    • Environments
    • GitOps
    • handling-releases
    • infrastructure-as-code
    • System Migrations
    • SDP
    • On Premises Hosting
    • Properties/configuration
    • Release process
    • Release
    • Roll Outs
    • serverless
    • Serverless
    • Cloud Services
    • Versioning
    • AWS
      • deploy-docker-esc
      • cloud-practitiioner-essentials-notes
        • Module 1 - Intro to AWS
        • Module 2 Compute in the cloud
        • Module 3 Global Infrastructure and Reliability
        • Module 4 Networking
        • Module 5 Storage and Databases
        • Security
        • 7 Monitoring and Aanlytics
        • 8 Pricing and Support
        • 9 Migration and Innovation
      • developer-associate
        • AWS Elastic Beanstalk
    • build-tools
      • Managing dependecies
      • Apache ANT
      • Gradle
        • Custom Plugins
        • local-jars
      • Project Management - maven
        • Archtypes
        • Build Lifecycles
        • Customising build lifecycle
        • Dependencies
        • Directory layout
        • jar-files
        • one-to-one
        • Modules
        • Phases
        • Maven Plugins
        • POM
        • profiles
        • setup
        • Starting a maven project
        • wrapper
    • CI/CD
      • Continuous Delivery
      • zookeeper
      • Continuous Integration (CI)
      • github-actions
      • Pipeline
      • Teamcity
    • Cloud computing
      • Overview
      • Service Models
      • Cloud Services
    • containers
      • Best Practices
      • Docker
    • Infrastructure
      • IT Infrastructure Model
      • Non functional Attributes (Quality Attributes)
        • Infrastructure Availability
        • Performance
        • Secruity
    • monitoring
      • Alerting
      • Monitoring & Metrics
      • Metrics
      • Ready pages
      • Splunk
      • Status pages
      • notes-devops-talk
      • logging
        • logging
        • issues
        • Logging
        • Logging
    • Service mesh
      • Service Discovery
      • Istio
    • Terraform
    • container-management
      • Kubernetes
        • commands-glossary
        • OLTP
        • config-maps
        • Links
        • ingress
        • SDP
        • minikube
        • filter
        • indexes
        • sidecar
        • continuous-deployment
  • General Paradigms
    • CAP theorem
    • designing data-intensive applications summary
    • a-philosophy-of-software-design-notes
    • Aspect oriented Programming (AOP)
    • Best Practice
    • Cargo Cult
    • Clean Code
    • Coding reflections
    • Cognitive Complexity
    • Complexity
    • Conventions
    • Design discussions
    • Design
    • Error Handling Checklist
    • Exceptions
    • Feature Flags/toggle
    • Functional requirements
    • Last Responsible Moment
    • Lock In
    • Named Arguments
    • Naming
    • Performance Fallacy
    • Quality
    • Redesign of a system
    • Resuse vs Decoupling
    • Rules for software designs
    • Sad Paths
    • Scaling Webservices
    • Scientific Method
    • stream-processing
    • Upstream and Downstream
    • Patterns
      • Client-SDK-Pattern
      • ORM
      • Api gateway
      • Business Rules Engine
      • cache
      • Composition Root
      • Dependency Injection Containers
      • Dependency Injections
      • Double Dispatch
      • Exception Handling
      • Gateway pattern
      • Humble Object
      • Inheritance for reuse
      • Null Object Pattern
      • Object Mother
      • Patterns
      • Collection pipeline pattern
      • Service Locator
      • Setter constructor
      • Static factory method
      • Step Builder Pattern
      • telescopic constructors
      • Toggles
      • API
        • Aims of API designs
        • Avoid Checked Exceptions
        • Avoid returning nulls
        • Be defensive with your data
        • convience-methods
        • Fluent Interfaces
        • Loan Pattern
        • prefer-enums-to-boolean-returns
        • return-meaningful-types
        • Small intefaces
        • Support Lambdas
        • Weakest type
      • Gang of Four
        • Builder
        • Factory Pattern
        • Strategy Pattern
        • Template
        • abstract Factory
        • Adapter
        • Bridge Pattern
        • Chain of responsibility
        • Command Pattern
        • Composite Design Pattern
        • Decorator Pattern
        • Facade Pattern
        • Flyweight pattern
        • Guard Clause
        • Interpreter
        • html
        • Mediator Pattern
        • Memento Pattern
        • Observer
        • Prototype
        • Proxy
        • Singleton
        • State Pattern
        • Visitor Pattern
    • Architecture
      • Entity Component System
      • Integration Operation Segregation Principle
      • Adaptable Architecture
      • Architecture
      • C4 Modelling
      • cell-based
      • Clean/Hexagonal Architecture
      • Codifying architecture
      • Correct By configuration
      • Cost Base Architecture
      • Data Oriented Design
      • deliberate
      • Domain oriented DOMA
      • Event Driven Architecture
      • Evolutionary Architecture
      • examples
      • Feature Architecture
      • Framework and Libraries
      • functional-core-imperative-shell
      • Layered Architecture
      • Micro services
      • monoliths-to-services
      • Multi tiered Architecture
      • Multi tenant application
      • Resilient Architecture
      • stage event driven architecture (SEDA)
      • links spring rest app
      • Tomato Architecture
      • Tooling
      • Types of architecture
      • checklist
        • Checklist for new project
        • Back end Architecture Checklist
        • Front end Architecture Checklist
        • Mobile Architecture Checklist
      • Cloud Patterns
        • Command and Query Responsibility Segregation (CQRS)
        • Event Sourcing & CQRS
        • Asynchronous Request and Reply
        • Circuit Breaker
        • Retry
        • Sidecar
        • Strangler pattern
      • Domain driven design
        • value & entity
      • Microservices
        • Alternatives to choosing microservices first when scaling
        • Consistency in distributed systems
        • 12 Factor applications
      • Modularity
        • Module monolith vs Microservices
        • Spring Moduilth
      • Architecture Patterns
        • Hexagonal architecture
        • Inverting dependencies
        • Layering & Dependency Inversion Principle
        • Mappings
        • Vertical Slice architecture
        • Web Client Server
        • domain
          • Business and Data Layers Separation
          • DTO
          • Domain Model Pattern
          • Domain Object
          • Transaction Script/ Use Case pattern
        • Enterprise Patterns
          • Concurrency
          • Distribution strategies
          • Domain layer patterns
          • Layering/organisation of code
          • Mapping to datasource
          • Session State
        • Usecases
          • Use case return types
      • Serverless
        • Knative
    • Design architecture aims
      • back of envelope
      • Design ideas
      • Design mistakes
      • high-volume-design
      • ISO Quality Attributes
      • Non functional requirements
      • “Designing for Performance” by Martin Thompson
      • High Performance
      • Qaulity Attributes
        • Availability
        • System Availability
        • Fault Tolerance
        • interoperability
        • Latency
        • Maintability
        • Modifiability
        • Performance
        • Readability
        • Reliability
        • Scalability vs performance
        • Scalability
        • Scaling
        • statelessness
        • Testability
        • Throughput
      • System Design
      • web-scalability-distributed-arch
        • scalable-and-distributed-web-architecture
    • README
      • Conflict-free Replicated Data Type
      • Fallacies
      • Load balancing
      • Rate Limiting
      • Transactions
    • Patterns of Enterprise Application Architecture
      • Repository Pattern
      • Rules Engines
      • scatter-gather
      • Specification Design Pattern
      • Table Driven Development
      • Workflow Design Patterns
        • Triggers
    • Principles
      • Do It Or Get Bitten In The End
      • Dont Repeat Yourself
      • Habitability
      • Keep it simple
      • Responsibility Driven Design
      • Ya Ain’t Gonna Need It
      • Conceptual Overhead
      • CUPID
      • Reuse existing interfaces
      • Facts and Fallacies
      • locality of behaviour
      • Separation of Concerns
      • Simplicity
      • SLAP principle
      • Step down rule
      • Unix Philosophy
      • Wrong abstractions
      • SOLID
        • 1. Single Responsibility Principle
        • 2. Open Close Principle
        • 3. Liskov Substitution Principle
        • 4. Interface Segregation Principle
        • 5. Dependency Inversion Principle
        • GRASP (General Responsibility Assignment Software Principles)
        • Solid for packages
          • jobs
          • CCP
          • CRP
          • REP
          • egress
          • gossip-protocol
        • STUPID
    • programming-types
      • Coding to Contract/Interface
      • Links
      • Declarative vs Imperative Programming Languages
      • defensive-programming
      • Design by contract
      • Domain Specific Languages (DSL)
      • Event Driven
      • file-transfers
      • Logical Programming
      • Mutability
      • Self Healing
      • Simplicity
      • Type Driven Design
      • Value objects
      • Aspect Oriented Programming
      • Concurrent and Parallel Programming
        • Actor Model
        • Asynchronous and Synchronous Programming
        • Batch processing
        • Concurrency Models
        • SAP
        • Multithreading
        • Non Blocking IO
        • Optimistic vs Pessimistic Concurrency
        • Thread per connection or request model
        • Actor
        • aysnchronous-tasks
          • Computational Graphs
          • Divide and conquer
          • Future
          • Thread Pool
        • barriers
          • Barriers
          • Race conditions
        • design
          • agglomeration
          • Communication
          • Mapping
          • Partitioning
        • Liveness
          • Abandoned Lock
          • Deadlocks
          • Livelock
          • Starvation
        • locks
          • Read write lock
          • Reentrant lock
          • Try Lock
        • Mutual Exclusion
          • Data Races
          • Mutual Exclusion AKA Locks
        • performance
          • Amdahl's Law
          • Latency, throughput & speed
          • Measure Speed up
        • synchronization
          • Condition variable
          • producer consumer pattern
          • Semaphore
        • Threads and processes
          • Concurrent and parallel programming
          • Daemon Thread
          • Execution Scheduling
          • sequential-parallel
          • Thread Lifecycle
          • threads-and-processes
      • Functional Programming
        • Currying
        • design-patterns-to-func
        • imperative-programming
        • First class functions
        • Functional Looping
        • Higher Order Functions
        • Immutability
        • Issues with functional Programming
        • Lambda calculus
        • Lazy & Eager
        • map
        • Monad
        • Railway Programming
        • Recursion
        • Reduce
        • referential-transparacy
        • Referential transparency
        • Supplier
      • oop-design
        • Issues with object oriented code
        • Aggregation
        • Anti Patterns
        • Association
        • class-and-objects
        • Composition
        • general-laws-of-programming
        • general-notes
        • Getters and Setters
        • Inside out programming
        • Inversion of control
        • oop-design
        • Other principles
        • Outside in programming
        • Readability
        • Why OO is bad
        • README
          • abstraction
          • encapsulation
          • inheritance
          • Polymorphism
        • clean-code
          • Code Smells
          • Comments
          • Naming
          • CLEAN design
            • code is assertive
            • Cohesion
            • Connascence
            • Coupling
            • Encapsulation
            • Loose Coupling
            • Nonredundant code
      • Reactive Programming
        • reactive-programming
    • Projects and Software types
      • Applicatoin Development
      • Buying or creating software
      • Console Applications
      • Embedded Software development
      • Enterprise
      • Framework Development
      • Games
      • Library development
      • Rewriting
      • White Label Apps
    • State Machines
      • Spring State Machine
  • Other
    • 10x devs
    • Aim of software
    • Choosing Technologies
    • Coding faster
    • Component ownership
    • developer-pain-points
    • Developer Types
    • Effective Software design
    • Full Stack Developer
    • Good coder
    • Issues with Software Engineering and Engineers
    • Learning
    • Logic
    • Role
    • Software Actions
    • Software craftmanship
    • Software Designed
    • Software Engineering
    • Software
    • article-summaries
      • General notes
      • Summary of The Grug Brained Developer A layman's guide to thinking like the self-aware smol brained
      • improve-backend-engineer
      • Optimising Api
      • Simple and Easy
    • README
  • Hardware
    • Cpu memory
    • Storage
  • Integration
    • GRPC
    • API
    • Apis and communications between apps
    • asynchronous and synchronous communications
    • Batch Processing
    • Communications between apps
    • Delivery
    • Distributed Computing
    • Entry point
    • Event Source
    • SDP
    • egress
    • Graphql
    • Idempotency
    • Libraries
    • Long Polling
    • Multiplexing & Demultiplexing
    • Publish Subscribe
    • Push
    • Request & Response
    • REST
    • Remote Method Invocation
    • Remote Procedure Calls
    • Server Sent Events
    • Short Polling
    • Sidecars
    • SOAP
    • Stateless and Stateful
    • Streams
    • Third Party Integrations
    • wdsl
    • Web Services
    • Webhooks
    • repository
    • Kafka
      • Kafka Streams
    • message-queues
      • ActiveMQ
      • Dead Letter Queue
      • JMS
      • Messaging
  • Languages
    • C
    • Choosing A Language
    • cobol
    • Composite Data Types
    • creating
    • Date time
    • Numbers
    • Pass by value vs Pass by reference
    • Primitive Data Types
    • REST anti-patterns
    • Rust
    • Scripting
    • Static typing
    • string
    • Task Oriented Language
    • assembly
    • Getting started
      • Functional Concepts
    • cpp
    • Java
      • Code style
      • Garbage Collection
      • Intellij Debugging
      • Artifacts, Jars
      • Java internals
      • Java resources
      • Java versions
      • JShell
      • Libraries
      • opinionated-guide
      • Starting java
      • Java Tools
      • Why use java
      • Advanced Java
        • Annotations
        • API
        • Database and java
        • Debugging Performance
        • Files IO
        • Finalize
        • JDBC
        • jni
        • Libraries
        • Logging
        • SAP
        • Memory Management
        • Modules
        • OTher
        • Packaging Application
        • Pattern matching
        • performance
        • Properties
        • Reference
        • reflection
        • Scaling
        • Scheduling
        • secruity
        • Serilization
        • Time in Java
        • validation
        • Vector
        • Concurrency and Multithreaading
          • Akka
          • ExecutorCompletionService
          • Asynchronous Programming
          • Concurrency and Threads
          • CountDownLatch
          • Conccurrent Data Structures
          • Executor Service
          • Futures
          • reactive
          • Semaphore
          • structured concurrency
          • Threadlocal
          • Threads
          • Virtual Threads
          • Mutual Exclusion
            • Atomic
            • Synchronized
            • Thread safe class
            • Threads
        • debug
          • heap-dumps
          • thread-dumps
        • functional
          • Collectors
          • Exception Handling
          • Flatmap
          • Functional Programming
          • Generators
          • Immutability
          • issues
          • Optional
          • Parallel Streams
          • Reduce
        • networks
          • HTTP client
          • servlet-webcontainers
          • sockets
          • ssl-tls-https
      • Basics of java
        • compilation
        • computation
        • Conditonal/Flow control
        • Excuting code
        • Instructions
        • Looping/Iterating
        • memory-types-variables
        • methods
        • Printing to screen/debugging
        • Setup the system
        • Data structures
          • Arrays
          • Arayslist/list
          • Map
      • Effective Java notes
        • Creating and Destroying Objects
        • Methods Common to All Objects
        • best-practice-api
        • Classes and Interfaces
        • Enums and Annotations
        • Generics
      • framework
        • aop
        • bad
        • Dagger
        • Databases
        • Lombok
        • Mapstruct
        • netty
        • resliance4j
        • RxJava
        • Vert.x
        • Spring
          • Spring Data Repositories
          • actuator
          • cloud-native
          • H2 Db in Spring
          • Initializrs
          • JDBC Template
          • Java Persistence API (JPA)
          • kotlin
          • Pitfalls and advice
          • PRoxies
          • Reactive
          • spring security
          • spring-aop
          • Spring Boot
          • spring-jdbc
          • Spring MVC
          • Spring Testing
          • Testing
          • Transaction
          • patterns
            • Component Scan Patterns
            • Concurrency
            • Decorator Pattern in Spring
        • Micronaut
          • DI
        • Quarkus
          • database
          • Links
      • Intermediate level java
        • String Class
        • Assertions
        • Casting
        • Clonable
        • Command line arguments
        • Common Libraries/classes
        • Comparators
        • Where to store them?
        • Shallow and Deep Copy
        • Date and Time
        • Enums
        • Equals and Hashcode
        • Equals and hashcode
        • Exceptions
        • Final
        • Finally
        • Generics
        • incrementors
        • Null
        • packages and imports
        • Random numbers
        • Regex
        • Static
        • toString()
        • OOP
          • Accessors
          • Classes
          • Object Oriented Programming
          • Constructors
          • Fields/state
          • Inheritence
          • Interfaces
          • Methods/behaviour
          • Nested Classes
          • Objects
          • Static VS Instance
          • Whether to use a dependency or static method?
        • Other Collections
          • Other Collections
          • Arraylist vs Linkedlist
          • LinkedHashMap
          • Linked List
          • Priority queue
          • Sequenced Collections
          • Set
          • Shallow vs Deep Copy
          • Time Complexity of Collections
          • What Collection To use?
    • kotlin
      • Domain Specific Language
      • learning
      • Libraries
      • Personal Roadmap
      • Links
    • Nodejs
      • Performance
  • Management & Workflow
    • Agile
    • Take Breaks
    • # Communication
    • Engineering Daybook
    • Estimates
    • Feedback Loops
    • Little's law
    • Managing Others
    • poser.
    • Presentations
    • self-improvement
    • software-teams
    • Task List
    • trade-off
    • Types of devs
    • Type of work
    • Waterfall Methodology
    • coding-process
      • Bugs
      • Code Review
      • Code Reviews
      • Documentation
      • Done
      • Handover
      • Mob Programming
      • Navigate codebase
      • Pair Programming
      • Pull Requests
      • How to do a story
      • Story to code
      • Trunk based development
      • Xtreme Programming (XP)
      • debugging
        • 9 Rules of Thumb of Dubugging
        • Debugging
        • using-debugger
      • Legacy code
        • Legacy crisis
        • Working with legacy code
    • Managing work
      • Theory of constraints
      • Distributed Teams
      • estimations
      • Improving team's output
      • Kanban
      • Kick offs
      • Retrospectives
      • Scrum
      • Sign offs
      • Stand ups
      • Time bombs
      • Project management triangle
    • Notion
    • recruitment
      • In Person Test
      • Interviews
      • Unattended test
  • Networks
    • Content Delivery Network - CDN
    • DNS
    • cache control
    • Cookies and Sessions
    • Docker Networking
    • Duplex
    • Etags
    • HTTP Cache
    • HTTP - Hyper Text Transfer Protocol
    • HTTP/2
    • Http 3
    • Internet & Web
    • iptables
    • Keep alive
    • Leader Election
    • Load balancer
    • long-polling
    • Network Access Control
    • Network Address Translation (NAT)
    • Network Layers
    • Nginx
    • OSI network model
    • Persistent Connection
    • Polling
    • Proxy
    • Quic
    • reverse-proxy
    • servers
    • Server sent events (SSE)
    • SSH
    • Streaming
    • Timeouts
    • Url Encoding
    • Web sockets
    • WebRTC (Web Real-Time Communication)
    • Wireshark
    • tcp/ip
      • Congestion
      • IP - Internet Protocol
      • TCP - Transmission Control Protocol
  • Operating Systems
    • Cloud Computing
    • Distributed File Systems
    • Distributed Shared Memory
    • Input/Output Management
    • Inter-Process Communication
    • Threads and Concurrency
    • Virtualization
    • Searching using CLI
    • Bash and scripting
    • Booting of linux
    • makefile
    • Memory Management
    • Processes and Process Management
    • Scheduling
    • Scripting
    • Links
    • Ubuntu
    • Unix File System
    • User groups
    • Linux
  • Other Topics
    • Finite state machine
    • Floating point
    • Googling
    • Setup
    • Unicode
    • Machine Learning
      • Artificial Intelligence
      • Jupyter Notebook
    • Blockchain
    • Front End
      • Single Page App
      • cqrs
      • css
      • Debounce
      • Dom, Virtual Dom
      • ADP
      • htmx
      • Island Architecture
      • Why use?
      • Java and front end tech
      • mermaidjs
      • Next JS
      • javascript
        • Debounce
        • design
        • Event loop
        • testing
        • Typescript
        • react
          • Design
          • learning
          • performance
          • React JS
          • testing
      • performance
      • Static website
    • jobs
      • Tooling
      • bash text editor - vim
      • VS code
      • scaling
        • AI Assistant
        • Debugging
        • General features and tips and tricks
        • IDE - Intellij
        • Plugins
        • Spring usage
  • persistance
    • ACID - Atomicity, Consistency, Isolation, Durability
    • BASE - Basic Availability, Soft state, Eventual Consistency
    • Buffer
    • Connection pooling
    • service
    • Database Migrations - flywaydb
    • Databases
    • Eventual Consistency
    • GraphQL
    • IDs
    • indexing
    • MongoDB
    • Normalisation
    • ORacle sql
    • Partitioning
    • patterns
    • PL SQL
    • Replication and Sharding
    • Repository pattern
    • Sharding
    • Snapshot
    • Strong Consistency
    • links
    • Files
      • Areas to think of
    • hibernate
      • ORM-hibernate
    • Indexes
      • Elastisearch
    • relationships
      • many-to-many
      • SDP
      • serverless
      • x-to-x-relationships
    • sql
      • Group by
      • indexes
      • Joins
      • Common mistakes
      • operators
      • performance
    • types
      • maven-commands-on-intellij
      • in-memory-database-h2
      • Key value database/store
      • Mongo DB
      • NoSQL Databases
      • Relational Database
      • Relational Vs Document Databases
  • Security
    • OAuth
    • API Keys
    • Certificates and JKS
    • Cluster Secruity
    • Communication Between Two Applications via TLS
    • Cookies & Sessions
    • CORS - Cross-Origin Resource Sharing
    • csrf
    • Encryption and Decryption
    • Endpoint Protection
    • JWT
    • language-specific
    • OpenID
    • OWASP
    • Secrets
    • Secruity
    • Servlet authentication and Authorization
    • vault
  • Testing, Maintainablity & Debugging
    • Service-virtualization and api mocking
    • a-test-bk
    • Build Monitor
    • Builds
    • Code coverage
    • consumer-driven contract testing
    • Fixity
    • Living Documentation
    • Mocks, Stubs & Doubles
    • patterns
    • Quality Engineering
    • Reading and working with legacy code
    • Reading
    • remote-debug-intellij
    • simulator
    • Technical Debt
    • Technical Waste
    • Test cases
    • Test Data Builders
    • Test Pyramids
    • Test Types
    • Testing Good Practice
    • Testing
    • What to prime
    • What to test
    • Debugging
      • Debugging in kubernetes or Docker
    • fixing
      • How to Deal with I/O Expense
      • How to Manage Memory
      • How to Optimize Loops
      • How to Fix Performance Problems
    • Legacy Code
      • Learning
      • Legacy code
      • techniques
    • libraries
      • assertj
      • Data Faker
      • Junit
      • mockito
      • Test Containers
      • Wiremock
      • Yatspec
    • Refactoring
      • Code Smells
      • refactoring-types
      • Refactoring
      • Technical Debt
      • pyramid-of-refactoring
        • Pyramid of Refactoring
    • Test first strategies
      • Acceptance Testing Driven Developement (ATDD)
      • Behaviour Driven Development/Design - BDD
      • Inside out
      • Outside in
      • Test driven development (TDD)
    • testing
      • Acceptance tests
      • How Much Testing is Enough?
      • Approval Testing
      • Bad Testing
      • End to end tests
      • Honeycomb
      • Testing Microservices
      • Mutation testing
      • Property based testing
      • Smoke Testing
      • social-unit-tests
      • solitary-unit-tests
      • Static Analysis Test
      • Unit testing
  • Version Control - Git
    • Branch by Abstraction
    • feature-branching
    • Git patches
    • Trunk Based Development
Powered by GitBook
On this page
  • Debuggin: Splitting problem space
  • Removing the error
  • Debugging tool
  • Using IDE
  • Use print statements
  • Stack trace
  • Debug using Logs
  • Debugging performance problems
  • Fixing
  • Debugging while container is up
  • Debugging after merge

Was this helpful?

  1. Testing, Maintainablity & Debugging

Debugging

PreviousWhat to testNextDebugging in kubernetes or Docker

Last updated 4 years ago

Was this helpful?

  • cornerstone of programming

    • Most important skill

    • Helps professional programmers work in a non ideal world

  • It is to see into the execution of a program by examining it.

    • For fixing the error

    • For understanding the software which lacks documentation, tests

  • To get visibility into the execution of a program you must be able to execute the code and observe something about it.

    • Sometimes this is visible, like what is being displayed on a screen, or the delay between two events.

    • In many other cases, it involves things that are not meant to be visible, like

      • the state of some variables inside the code

      • which lines of code are actually being executed, or

      • whether certain assertions hold across a complicated data structure.

    • These hidden things must be revealed.

  • The common ways of looking into the ‘innards’ of an executing program

    • Using a debugging tool,

    • Printlining

      • Making a temporary modification to the program, typically adding lines that print information out

    • Logging

      • Creating a permanent window into the programs execution in the form of a log.

  • Involves changing code to find out what is going on

    • safe doing this using existing tests suite and version control

Debuggin: Splitting problem space

  • IT is a mystery to be solved

    • You think it should do something, but instead it does something else.

  • Use divide an conquer to split different areas of code to debug

    • This can be passed to other members of the teams

  • Other dimensions of the program, such as

    • the space of executed lines

    • the data structure

    • the memory management

    • the interaction with foreign code

    • the code that is risky

    • the code that is simple

Removing the error

  • In fixing a bug, you want to make the smallest change that fixes the bug.

    • You may see other things that need improvement; but don't fix those at the same time.

  • Attempt to employ the scientific method of changing one thing and only one thing at a time

  • The best process for this is to be able to easily reproduce the bug, then put your fix in place, and then rerun the program and observe that the bug no longer exists.

  • Sometimes, there are really several bugs that look like one.

    -

Debugging tool

  • Debugging tools often lag behind language development, so at any point in time they may not be available.

  • the debugging tool may subtly change the way the program executes it may not always be practical

Using IDE

  • Break points

    • Handling loops

    • Where to place

      • use stack trace

  • debugging through streams

  • Go to breakpoint

  • next step

  • go into

  • Evaluate expression

    • code fragment

Use print statements

  • for when app is running in container and cannot debug via IDE

Stack trace

  • Search for exception message

  • search for path which involves your code

Debug using Logs

  • Logging is the practice of writing a system so that it produces a sequence of informative records, called a log

  • The amount of information that is provided by the log should be configurable, ideally while the program is running

  • Beneifts of logs

    • Logs can provide useful information about bugs that are hard to reproduce (such as those that occur in the production environment but that cannot be reproduced in the test environment).

    • Logs can provide statistics and data relevant to performance, such as the time passing between statements.

    • When configurable, logs allow general information to be captured in order to debug unanticipated specific problems without having to modify and/or redeploy the code just to deal with those specific problems.

  • The amount to output into the log is always a compromise between information and brevity. Too much information makes the log expensive and produces scroll blindness, making it hard to find the information you need. Too little information and it may not contain what you need.

  • Typically, each record in the log will

    • identify its position in the source code

    • the thread that executed it if applicable

    • the precise time of execution,

    • commonly, an additional useful piece of information, such as the value of some variable, the amount of free memory, the number of data objects, etc.

  • These log statements are sprinkled throughout the source code, particularly at major functionality points and around risky code

  • Each statement can be assigned a level and will only output a record if the system is currently configured to output that level.

  • You should design the log statements to address problems that you anticipate

Debugging performance problems

  • Even if you understand perfectly precisely the cost of the code you write, your code will make calls into other software systems that you have little control over or visibility into.

  • Before you try to make your system faster, you must build a mental model of why it is slow.

    • can use a profiling tool or a good log/metrics to figure out where the time or other resources are really being spent.

  • Often most of the time is spent in I/O in one way or another. Finding the expensive I/O

  • There are many dimensions to the performance of a computer system, and many resources consumed.

    • The first resource to measure is wall-clock time, the total time that passes for the computation.

      • can inform about unpredictable circumstances that arise in situations where other profiling is impractical

      • may not always represent the whole picture

        • Sometimes something that takes a little longer but doesn't burn up so many processor seconds will be much better in the computing environment you actually have to deal with.

    • memory, network bandwidth, database or other server accesses may, in the end, be far more expensive than processor seconds.

    • Contention for shared resources that are synchronized can cause deadlock and starvation.

      • Deadlock is the inability to proceed because of improper synchronization or resource demands.

      • Starvation is the failure to schedule a component properly

Fixing

  • Intermittant bugs

    • This nightmare occurs so rarely that it is hard to observe, yet often enough that it can't be ignored. You can't debug because you can't find it

    • What makes it hard is that it occurs only under unknown conditions

      • Try to record the circumstances under which the bug does occur, so that you can guess what the variability really is.

      • The condition may be related to data values

      • If that is not the source of variability, the next suspect should be improperly synchronized concurrency.

    • try to reproduce the bug in a controlled way.

      • If you can't reproduce it, set a trap for it by building a logging system, a special one if you have to, that can log what you guess you need when it really does occur.

        • Necssary if bug only found in production

        • But takes a long time

    • This can happen in third party code

Debugging while container is up

Debugging after merge

  • When merging, must make sure that the branch or patch already passes the build

  • when merged and compliation passes, there will probably be failing tests

    • especially if patching changes from current system to a new system, as new system may have changed (refactored/deleted code/changed code etc)

    • Check things which might be affected from the changes made first, this might require using a debugger to find where in code base the flow hits the changed code

https://www.freecodecamp.org/news/how-to-improve-your-debugging-skills/
https://medium.com/swlh/remote-debugging-a-java-application-running-in-docker-container-with-intellij-idea-efe54cd77f02